Monte Carlo Tree Search Bidding Strategy for Simultaneous Ascending Auctions

Alexandre Pacaud, M. Coupechoux, Aurélien Bechler
{"title":"Monte Carlo Tree Search Bidding Strategy for Simultaneous Ascending Auctions","authors":"Alexandre Pacaud, M. Coupechoux, Aurélien Bechler","doi":"10.23919/WiOpt56218.2022.9930539","DOIUrl":null,"url":null,"abstract":"We tackle in this work the problem for a player to efficiently bid in Simultaneous Ascending Auctions (SAA). Although the success of SAA partially comes from its relative simplicity, bidding efficiently in such an auction is complicated as it presents a number of complex strategical problems. No generic algorithm or analytical solution has yet been able to compute the optimal bidding strategy in face of such complexities. By modelling the auction as a turn-based deterministic game with complete information, we propose the first algorithm which tackles simultaneously two of its main issues: exposure and own price effect. Our bidding strategy is computed by Monte Carlo Tree Search (MCTS) which relies on a new method for the prediction of closing prices. We show that our algorithm significantly outperforms state-of-the-art existing bidding methods. More precisely, our algorithm achieves a higher expected utility by taking lower risks than existing strategies.","PeriodicalId":228040,"journal":{"name":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WiOpt56218.2022.9930539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We tackle in this work the problem for a player to efficiently bid in Simultaneous Ascending Auctions (SAA). Although the success of SAA partially comes from its relative simplicity, bidding efficiently in such an auction is complicated as it presents a number of complex strategical problems. No generic algorithm or analytical solution has yet been able to compute the optimal bidding strategy in face of such complexities. By modelling the auction as a turn-based deterministic game with complete information, we propose the first algorithm which tackles simultaneously two of its main issues: exposure and own price effect. Our bidding strategy is computed by Monte Carlo Tree Search (MCTS) which relies on a new method for the prediction of closing prices. We show that our algorithm significantly outperforms state-of-the-art existing bidding methods. More precisely, our algorithm achieves a higher expected utility by taking lower risks than existing strategies.
同时上升拍卖的蒙特卡洛树搜索竞价策略
在这项工作中,我们解决了玩家在同步上升拍卖(SAA)中有效出价的问题。尽管SAA的成功部分来自于它的相对简单,但在这种拍卖中有效竞标是复杂的,因为它提出了许多复杂的战略问题。目前还没有通用算法或解析解能够计算出面对这种复杂性的最优竞价策略。通过将拍卖建模为具有完整信息的回合制确定性游戏,我们提出了第一种算法,该算法同时解决了其两个主要问题:曝光率和自身价格效应。我们的出价策略是由蒙特卡洛树搜索(MCTS)计算,它依赖于一种新的方法来预测收盘价。我们表明,我们的算法显着优于最先进的现有投标方法。更准确地说,我们的算法通过比现有策略承担更低的风险来实现更高的期望效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信