Sudarshan Ramenahalli, Daniel R. Mendat, S. Dura-Bernal, E. Culurciello, E. Niebur, A. Andreou
{"title":"Audio-visual saliency map: Overview, basic models and hardware implementation","authors":"Sudarshan Ramenahalli, Daniel R. Mendat, S. Dura-Bernal, E. Culurciello, E. Niebur, A. Andreou","doi":"10.1109/CISS.2013.6552285","DOIUrl":null,"url":null,"abstract":"In this paper we provide an overview of audiovisual saliency map models. In the simplest model, the location of auditory source is modeled as a Gaussian and use different methods of combining the auditory and visual information. We then provide experimental results with applications of simple audio-visual integration models for cognitive scene analysis. We validate the simple audio-visual saliency models with a hardware convolutional network architecture and real data recorded from moving audio-visual objects. The latter system was developed under Torch language by extending the attention.lua (code) and attention.ui (GUI) files that implement Culurciello's visual attention model.","PeriodicalId":268095,"journal":{"name":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 47th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2013.6552285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
In this paper we provide an overview of audiovisual saliency map models. In the simplest model, the location of auditory source is modeled as a Gaussian and use different methods of combining the auditory and visual information. We then provide experimental results with applications of simple audio-visual integration models for cognitive scene analysis. We validate the simple audio-visual saliency models with a hardware convolutional network architecture and real data recorded from moving audio-visual objects. The latter system was developed under Torch language by extending the attention.lua (code) and attention.ui (GUI) files that implement Culurciello's visual attention model.