Fingerprint Presentation Attack Detection: Generalization and Efficiency

T. Chugh, Anil K. Jain
{"title":"Fingerprint Presentation Attack Detection: Generalization and Efficiency","authors":"T. Chugh, Anil K. Jain","doi":"10.1109/ICB45273.2019.8987374","DOIUrl":null,"url":null,"abstract":"We study the problem of fingerprint presentation attack detection (PAD) under unknown PA materials not seen during PAD training. A dataset of 5, 743 bonafide and 4, 912 PA images of 12 different materials is used to evaluate a state-of-the-art PAD, namely Fingerprint Spoof Buster. We utilize 3D t-SNE visualization and clustering of material characteristics to identify a representative set of PA materials that cover most of PA feature space. We observe that a set of six PA materials, namely Silicone, 2D Paper, Play Doh, Gelatin, Latex Body Paint and Monster Liquid Latex provide a good representative set that should be included in training to achieve generalization of PAD. We also implement an optimized Android app of Fingerprint Spoof Buster that can run on a commodity smartphone (Xiaomi Redmi Note 4) without a significant drop in PAD performance (from TDR = 95.7% to 95.3% @ FDR = 0.2%) which can make a PA prediction in less than 300ms.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

We study the problem of fingerprint presentation attack detection (PAD) under unknown PA materials not seen during PAD training. A dataset of 5, 743 bonafide and 4, 912 PA images of 12 different materials is used to evaluate a state-of-the-art PAD, namely Fingerprint Spoof Buster. We utilize 3D t-SNE visualization and clustering of material characteristics to identify a representative set of PA materials that cover most of PA feature space. We observe that a set of six PA materials, namely Silicone, 2D Paper, Play Doh, Gelatin, Latex Body Paint and Monster Liquid Latex provide a good representative set that should be included in training to achieve generalization of PAD. We also implement an optimized Android app of Fingerprint Spoof Buster that can run on a commodity smartphone (Xiaomi Redmi Note 4) without a significant drop in PAD performance (from TDR = 95.7% to 95.3% @ FDR = 0.2%) which can make a PA prediction in less than 300ms.
指纹表示攻击检测:泛化与效率
研究了指纹呈现攻击检测(PAD)训练中未见的未知PA材料下的指纹呈现攻击检测问题。一个包含5,743张真实图像和4,912张不同材料的PA图像的数据集被用来评估最先进的PAD,即指纹欺骗Buster。我们利用3D t-SNE可视化和材料特征聚类来识别覆盖大部分PA特征空间的PA材料的代表性集合。我们观察到一组六种PA材料,即硅胶,2D纸,Play Doh,明胶,乳胶人体涂料和怪物液体乳胶,提供了一个很好的代表性集合,应该包括在训练中,以实现PAD的泛化。我们还实现了指纹欺骗Buster的优化Android应用程序,可以在商用智能手机(小米红米Note 4)上运行,而不会显著降低PAD性能(从TDR = 95.7%到95.3% @ FDR = 0.2%),可以在不到300毫秒的时间内进行PA预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信