Bootstrap Analysis of Genetic Networks inferred by the Method Using LPMs

Shuhei Kimura, Koki Matsumura, Mariko Okada
{"title":"Bootstrap Analysis of Genetic Networks inferred by the Method Using LPMs","authors":"Shuhei Kimura, Koki Matsumura, Mariko Okada","doi":"10.1109/ICCSA.2010.69","DOIUrl":null,"url":null,"abstract":"Recently, we proposed a genetic network inference method using linear programming machines (LPMs). As this method infers genetic networks by solving linear programming problems, its computational time is very short. However, generic networks inferred by the method using the LPMs often contain a large number of false-positive regulations. When we try to apply the inference method to actual problems, we must experimentally validate the inferred regulations. Therefore, it is important to reduce the number of false-positive regulations. To decrease the number of regulations we must validate, this study assigns confidence values to all of the possible regulations. For this purpose, we combine a bootstrap method and the method using the LPMs. Through numerical experiments on artificial genetic network inference problems, we check the effectiveness of assessing the confidence values of the regulations.","PeriodicalId":405597,"journal":{"name":"2010 International Conference on Computational Science and Its Applications","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Science and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA.2010.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, we proposed a genetic network inference method using linear programming machines (LPMs). As this method infers genetic networks by solving linear programming problems, its computational time is very short. However, generic networks inferred by the method using the LPMs often contain a large number of false-positive regulations. When we try to apply the inference method to actual problems, we must experimentally validate the inferred regulations. Therefore, it is important to reduce the number of false-positive regulations. To decrease the number of regulations we must validate, this study assigns confidence values to all of the possible regulations. For this purpose, we combine a bootstrap method and the method using the LPMs. Through numerical experiments on artificial genetic network inference problems, we check the effectiveness of assessing the confidence values of the regulations.
基于lpm方法的遗传网络自举分析
最近,我们提出了一种基于线性规划机(lpm)的遗传网络推理方法。该方法通过求解线性规划问题来推导遗传网络,计算时间短。然而,使用lpm方法推断的一般网络通常包含大量的假阳性规则。当我们试图将推理方法应用于实际问题时,必须通过实验验证推断出的规律。因此,减少假阳性法规的数量是非常重要的。为了减少我们必须验证的法规数量,本研究为所有可能的法规分配了置信度值。为此,我们结合了自举方法和使用lpm的方法。通过对人工遗传网络推理问题的数值实验,验证了规则置信度评估的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信