{"title":"Game-Theoretic Approach for Complete Vehicle Energy Management","authors":"H. Chen, J. Kessels, M. Donkers, S. Weiland","doi":"10.1109/VPPC.2014.7007077","DOIUrl":null,"url":null,"abstract":"This paper describes a game-theoretic approach and the calculation of an online implementable strategy for solving the Complete Vehicle Energy Management (CVEM) problem, which aims at minimizing the global fuel consumption of a hybrid heavy-duty truck including all its auxiliary systems. The approach is based on a two-level single-leader multi-follower game, in which the driver is considered as a leader and each controlled auxiliary is considered as a follower. In the first level, a sequential game between the leader (driver) and each follower (auxiliary) is played and the corresponding Stackelberg strategy is computed offline and stored in a lookup table. In the second level, a simultaneous game is played among all followers and an online iterative process is introduced to find an approximation of a Nash equilibrium for all followers. This approach is tested on a hybrid heavy-duty truck model where a high-voltage battery and an electric refrigerated semi-trailer are considered. The performance in terms of fuel economy is found close to the true optimal solution.","PeriodicalId":133160,"journal":{"name":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Vehicle Power and Propulsion Conference (VPPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2014.7007077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
This paper describes a game-theoretic approach and the calculation of an online implementable strategy for solving the Complete Vehicle Energy Management (CVEM) problem, which aims at minimizing the global fuel consumption of a hybrid heavy-duty truck including all its auxiliary systems. The approach is based on a two-level single-leader multi-follower game, in which the driver is considered as a leader and each controlled auxiliary is considered as a follower. In the first level, a sequential game between the leader (driver) and each follower (auxiliary) is played and the corresponding Stackelberg strategy is computed offline and stored in a lookup table. In the second level, a simultaneous game is played among all followers and an online iterative process is introduced to find an approximation of a Nash equilibrium for all followers. This approach is tested on a hybrid heavy-duty truck model where a high-voltage battery and an electric refrigerated semi-trailer are considered. The performance in terms of fuel economy is found close to the true optimal solution.