Model-based method for estimating LiCoO2 battery state of health and behaviors

Junfu Li, Chao Lyu, Lixin Wang, Tengfei Ge
{"title":"Model-based method for estimating LiCoO2 battery state of health and behaviors","authors":"Junfu Li, Chao Lyu, Lixin Wang, Tengfei Ge","doi":"10.1109/ICPHM.2016.7542819","DOIUrl":null,"url":null,"abstract":"Simplified mechanistic models can accurately simulate battery behaviors and are more suitable for studies on mechanistic parameters. Battery remaining useful life can be predicted by analyzing the variations of parameters at different aging stages. The main work of this paper is listed below: (i) Parameters of mechanistic model at different stages are analyzed according to their variation laws, (ii) Based on the variations of these selected parameters, battery discharge behaviors are predicted. The simulated results show good agreement with measurements.","PeriodicalId":140911,"journal":{"name":"2016 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2016.7542819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Simplified mechanistic models can accurately simulate battery behaviors and are more suitable for studies on mechanistic parameters. Battery remaining useful life can be predicted by analyzing the variations of parameters at different aging stages. The main work of this paper is listed below: (i) Parameters of mechanistic model at different stages are analyzed according to their variation laws, (ii) Based on the variations of these selected parameters, battery discharge behaviors are predicted. The simulated results show good agreement with measurements.
基于模型的锂离子电池健康状态和行为估计方法
简化的力学模型可以准确地模拟电池的行为,更适合于力学参数的研究。通过分析电池在不同老化阶段参数的变化,可以预测电池剩余使用寿命。本文的主要工作如下:(1)根据力学模型在不同阶段的参数变化规律进行分析;(2)根据所选参数的变化预测电池的放电行为。模拟结果与实测结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信