Multi-Scale Context-Aware R-Cnn for Few-Shot Object Detection in Remote Sensing Images

Haozheng Su, Yanan You, Gang Meng
{"title":"Multi-Scale Context-Aware R-Cnn for Few-Shot Object Detection in Remote Sensing Images","authors":"Haozheng Su, Yanan You, Gang Meng","doi":"10.1109/IGARSS46834.2022.9883807","DOIUrl":null,"url":null,"abstract":"In the field of remote sensing image object detection, the popular CNN-based methods need a large-scale and diverse dataset that is costly, and have limited generalization abili-ties for new categories. The few-shot object detection can be driven using only a few annotated samples. Existing few-shot detection methods are mainly designed for natural images, which ignore multi-scale objects and complex environments in remote sensing images. To tackle these challenges, we pro-pose a two-stage multi-scale method based on context mech-anism. Guided by the context-aware module, the multi-scale contextual information around the object is effectively extract and adaptively is combined into the ROI features to enhance the classification ability of the detector, which can reduce the classification confusion. Comparative experiments on public remote sensing image dataset RSOD show the effectiveness of our method.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the field of remote sensing image object detection, the popular CNN-based methods need a large-scale and diverse dataset that is costly, and have limited generalization abili-ties for new categories. The few-shot object detection can be driven using only a few annotated samples. Existing few-shot detection methods are mainly designed for natural images, which ignore multi-scale objects and complex environments in remote sensing images. To tackle these challenges, we pro-pose a two-stage multi-scale method based on context mech-anism. Guided by the context-aware module, the multi-scale contextual information around the object is effectively extract and adaptively is combined into the ROI features to enhance the classification ability of the detector, which can reduce the classification confusion. Comparative experiments on public remote sensing image dataset RSOD show the effectiveness of our method.
基于多尺度上下文感知的R-Cnn遥感图像小目标检测
在遥感图像目标检测领域,流行的基于cnn的方法需要大规模和多样化的数据集,成本高,并且对新类别的泛化能力有限。使用少量的带注释的样本就可以驱动少镜头目标检测。现有的少镜头检测方法主要针对自然图像,忽略了遥感图像中的多尺度目标和复杂环境。为了解决这些问题,我们提出了一种基于上下文机制的两阶段多尺度方法。在上下文感知模块的引导下,有效提取目标周围的多尺度上下文信息,并自适应地组合到ROI特征中,增强检测器的分类能力,减少分类混淆。在公共遥感图像数据集RSOD上的对比实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信