{"title":"Design of a 17-21 GHz Power Amplifier Based on an Extended Resistive Continuous Mode","authors":"Chupeng Yi, Yang Lu, Ziyue Zhao, Hengshuang Zhang, Bochao Zhao, Peixian Li, Xiao-hua Ma, Yue Hao","doi":"10.1109/IWS55252.2022.9977811","DOIUrl":null,"url":null,"abstract":"In this paper, an efficiency improvement method in multistage power amplifier (PA) is proposed. Combined with the power stage transistor operate in continuous class-F and the driver stage transistor operate in continuous class-F-1, the power-added efficiency (PAE) of multistage PA can be further improved. Meanwhile, a large power push ratio is adopted to determine the size of transistors at each stage and a voltage divider circuit is used to maintain the same bias. The proposed method was verified by implementing an MMIC PA utilizing a 0.1 $\\mu \\text{mGaAs}$ pHEMT process. The PA is used for the 17–21 GHz satellite communication system with a saturated output power of 1 W and an average PAE higher than 44% while having a small signal gain of 23 dB.","PeriodicalId":126964,"journal":{"name":"2022 IEEE MTT-S International Wireless Symposium (IWS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWS55252.2022.9977811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an efficiency improvement method in multistage power amplifier (PA) is proposed. Combined with the power stage transistor operate in continuous class-F and the driver stage transistor operate in continuous class-F-1, the power-added efficiency (PAE) of multistage PA can be further improved. Meanwhile, a large power push ratio is adopted to determine the size of transistors at each stage and a voltage divider circuit is used to maintain the same bias. The proposed method was verified by implementing an MMIC PA utilizing a 0.1 $\mu \text{mGaAs}$ pHEMT process. The PA is used for the 17–21 GHz satellite communication system with a saturated output power of 1 W and an average PAE higher than 44% while having a small signal gain of 23 dB.