Artifact Detection in Multichannel Sleep EEG using Random Forest Classifier

E. Saifutdinova, D. Dudysova, L. Lhotská, V. Gerla, M. Macas
{"title":"Artifact Detection in Multichannel Sleep EEG using Random Forest Classifier","authors":"E. Saifutdinova, D. Dudysova, L. Lhotská, V. Gerla, M. Macas","doi":"10.1109/BIBM.2018.8621374","DOIUrl":null,"url":null,"abstract":"Detection of artifacts in sleep electroencephalography (EEG) is one of the important tasks on the preprocessing step. Despite many algorithms of artifact detection developed through years, many of them lose their benefits in sleep EEG application. This study proposes a method of artifact detection based on a classification of quasi-stationary EEG epochs with random forest classifier. The method was tested on data of three sleep stages and pre-sleep wake EEG. Results showed 16% increase in $F_{1\\,} $for the wake and 9%, 5% and 16% for different sleep stages in comparison to a baseline. All false detection at every presented sleep stage is investigated.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Detection of artifacts in sleep electroencephalography (EEG) is one of the important tasks on the preprocessing step. Despite many algorithms of artifact detection developed through years, many of them lose their benefits in sleep EEG application. This study proposes a method of artifact detection based on a classification of quasi-stationary EEG epochs with random forest classifier. The method was tested on data of three sleep stages and pre-sleep wake EEG. Results showed 16% increase in $F_{1\,} $for the wake and 9%, 5% and 16% for different sleep stages in comparison to a baseline. All false detection at every presented sleep stage is investigated.
基于随机森林分类器的多通道睡眠脑电图伪影检测
睡眠脑电图伪影检测是睡眠脑电图预处理的重要环节之一。尽管近年来开发了许多伪影检测算法,但其中许多算法在睡眠脑电图的应用中失去了优势。本文提出了一种基于随机森林分类器的准平稳脑电信号时代分类的伪影检测方法。用三个睡眠阶段和睡眠前清醒脑电图数据对该方法进行了验证。结果显示,与基线相比,清醒时的F_{1\,} $增加了16%,不同睡眠阶段的F_{1\,} $增加了9%,5%和16%。在每个呈现的睡眠阶段的所有错误检测被调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信