Machine Learning based Rainfall Prediction

R. Grace, B. Suganya
{"title":"Machine Learning based Rainfall Prediction","authors":"R. Grace, B. Suganya","doi":"10.1109/ICACCS48705.2020.9074233","DOIUrl":null,"url":null,"abstract":"Rainfall prediction is the one of the important technique to predict the climatic conditions in any country. This paper proposes a rainfall prediction model using Multiple Linear Regression (MLR) for Indian dataset. The input data is having multiple meteorological parameters and to predict the rainfall in more precise. The Mean Square Error (MSE), accuracy, correlation are the parameters used to validate the proposed model. From the results, the proposed machine learning model provides better results than the other algorithms in the literature.","PeriodicalId":439003,"journal":{"name":"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS48705.2020.9074233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Rainfall prediction is the one of the important technique to predict the climatic conditions in any country. This paper proposes a rainfall prediction model using Multiple Linear Regression (MLR) for Indian dataset. The input data is having multiple meteorological parameters and to predict the rainfall in more precise. The Mean Square Error (MSE), accuracy, correlation are the parameters used to validate the proposed model. From the results, the proposed machine learning model provides better results than the other algorithms in the literature.
基于机器学习的降雨预测
降雨预报是预测各国气候状况的重要技术之一。本文提出了一种基于多元线性回归(MLR)的降雨预测模型。输入的数据具有多个气象参数,可以更精确地预测降雨。均方误差(MSE),精度,相关性是用来验证所提出的模型的参数。从结果来看,所提出的机器学习模型提供了比文献中其他算法更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信