Improving Hybrid Gravitational Search Algorithm for Adaptive Adjustment of Parameters

Yongchao Han, Ming Li, Jie Liu
{"title":"Improving Hybrid Gravitational Search Algorithm for Adaptive Adjustment of Parameters","authors":"Yongchao Han, Ming Li, Jie Liu","doi":"10.1109/CIS.2017.00013","DOIUrl":null,"url":null,"abstract":"In this paper, a new Improved Hybrid Gravitational Search Algorithm (IHGSA) is proposed. First, the influence of the learning factor on global exploration and the local exploitation of the algorithm is analyzed, and the parameter adjustment mechanism which can balance the two search capabilities is designed reasonably. Secondly, the PSO is embedded into the Gravitational Search Algorithm (GSA), and an Improved Hybrid Gravitational Search Algorithm (IHGSA) is proposed. Finally, 21 benchmark test functions are programmed and calculated in comparison with the results of the Gravity Search Algorithm (GSA). The numerical results show that the new algorithm balanced the global exploration and local exploitation. The IHGSA are also better than the Gravity Search Algorithm (GSA) in convergence rate and convergence accuracy.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a new Improved Hybrid Gravitational Search Algorithm (IHGSA) is proposed. First, the influence of the learning factor on global exploration and the local exploitation of the algorithm is analyzed, and the parameter adjustment mechanism which can balance the two search capabilities is designed reasonably. Secondly, the PSO is embedded into the Gravitational Search Algorithm (GSA), and an Improved Hybrid Gravitational Search Algorithm (IHGSA) is proposed. Finally, 21 benchmark test functions are programmed and calculated in comparison with the results of the Gravity Search Algorithm (GSA). The numerical results show that the new algorithm balanced the global exploration and local exploitation. The IHGSA are also better than the Gravity Search Algorithm (GSA) in convergence rate and convergence accuracy.
参数自适应调整的改进混合引力搜索算法
本文提出了一种改进的混合引力搜索算法。首先,分析了学习因子对算法全局搜索和局部挖掘的影响,合理设计了能够平衡两种搜索能力的参数调整机制;其次,将粒子群算法嵌入到引力搜索算法中,提出了一种改进的混合引力搜索算法(IHGSA)。最后,编写了21个基准测试函数,并与重力搜索算法(Gravity Search Algorithm, GSA)的结果进行了对比计算。数值结果表明,新算法平衡了全局探索和局部开发。IHGSA在收敛速度和收敛精度上也优于重力搜索算法(GSA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信