Obstacle avoidance methods in the chaotic UAV

Youngchul Bae, Ju-Wan Kim
{"title":"Obstacle avoidance methods in the chaotic UAV","authors":"Youngchul Bae, Ju-Wan Kim","doi":"10.1109/DASC.2004.1390841","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos UAVs meet an obstacle in an Arnold equation or Chua's equation trajectory, the obstacle reflects the UAV. We also show computer simulation results of Arnold equation and Chua's equation UAV chaos trajectories with one or more Van der Pol obstacles. We show that the Chua's equation is slightly more efficient in coverage rates when two UAVs are used, and the optimal number of UAVs in either the Arnold equation or the Chua's equation is also examined.","PeriodicalId":422463,"journal":{"name":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2004.1390841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos UAVs meet an obstacle in an Arnold equation or Chua's equation trajectory, the obstacle reflects the UAV. We also show computer simulation results of Arnold equation and Chua's equation UAV chaos trajectories with one or more Van der Pol obstacles. We show that the Chua's equation is slightly more efficient in coverage rates when two UAVs are used, and the optimal number of UAVs in either the Arnold equation or the Chua's equation is also examined.
混沌无人机的避障方法
在本文中,我们提出了一种在混沌轨迹表面上避免具有不稳定极限环的障碍物的方法。我们假设混沌轨迹表面上的所有障碍物都具有一个具有不稳定极限环的Van der Pol方程。当混沌无人机在Arnold方程或Chua方程轨迹上遇到障碍物时,障碍物反映了无人机本身。我们还展示了具有一个或多个Van der Pol障碍的Arnold方程和Chua方程无人机混沌轨迹的计算机模拟结果。我们表明,当使用两架无人机时,蔡氏方程在覆盖率方面稍有效率,并且还检查了阿诺德方程或蔡氏方程中的最佳无人机数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信