Missing value imputation with linear methods in the database of cardiological patients in prediction of mortality

Tatiana S. Bibicheva, V. Skazkina, Marina V. Ogneva, M. Simonyan, V. Gridnev, A. Karavaev
{"title":"Missing value imputation with linear methods in the database of cardiological patients in prediction of mortality","authors":"Tatiana S. Bibicheva, V. Skazkina, Marina V. Ogneva, M. Simonyan, V. Gridnev, A. Karavaev","doi":"10.15275/cardioit.2021.0101","DOIUrl":null,"url":null,"abstract":"This study examines missing value imputation in the Russian Acute Coronary Syndrome Registry (RusACSR) and assessment of the probability of predicting mortality. Linear methods with the most probable or average value were used for imputation. The prediction problem was solved using the k-nearest neighbors method. This work reveals that the imputation method, despite their simplicity, increases the probability of prediction of mortality by 6%.","PeriodicalId":164423,"journal":{"name":"Cardio-IT","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardio-IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15275/cardioit.2021.0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines missing value imputation in the Russian Acute Coronary Syndrome Registry (RusACSR) and assessment of the probability of predicting mortality. Linear methods with the most probable or average value were used for imputation. The prediction problem was solved using the k-nearest neighbors method. This work reveals that the imputation method, despite their simplicity, increases the probability of prediction of mortality by 6%.
用线性方法在心脏病患者数据库中缺失值代入预测死亡率
本研究检验了俄罗斯急性冠状动脉综合征登记处(RusACSR)的缺失值代入和预测死亡率概率的评估。采用最可能值或平均值的线性方法进行估算。利用k近邻法解决了预测问题。这项工作表明,尽管这种方法简单,但预测死亡率的概率提高了6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信