{"title":"Approximate Molecular Orbital Theory: The Hückel/Tight-binding Model","authors":"J. Autschbach","doi":"10.1093/OSO/9780190920807.003.0012","DOIUrl":null,"url":null,"abstract":"Huckel molecular orbital (HMO) theory is a simple approximate parameterized molecular orbital (MO) theory that has been very successful in organic chemistry and other fields. This chapter introduces the approximations made in HMO theory, and then treats as examples ethane, hetratriene and other linear polyenes, and benzene and other cyclic polyenes. The pi binding energy of benzene is particularly large according to HMO theory, rationalizing the special ‘aromatic’ behaviour of benzene. But there is a lot more to benzene than that. It is shown that the pi bond framework of benzene would rather prefer a structure with alternating single and double C-C bonds, rather than the actually observed 6-fold symmetric structure where all C-C bonds are equivalent. The observed benzene structure is a result of a delicate balance between the tendencies of the pi framework to create bond length alternation, and the sigma framework to resist bond length alternation.","PeriodicalId":207760,"journal":{"name":"Quantum Theory for Chemical Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Theory for Chemical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780190920807.003.0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Huckel molecular orbital (HMO) theory is a simple approximate parameterized molecular orbital (MO) theory that has been very successful in organic chemistry and other fields. This chapter introduces the approximations made in HMO theory, and then treats as examples ethane, hetratriene and other linear polyenes, and benzene and other cyclic polyenes. The pi binding energy of benzene is particularly large according to HMO theory, rationalizing the special ‘aromatic’ behaviour of benzene. But there is a lot more to benzene than that. It is shown that the pi bond framework of benzene would rather prefer a structure with alternating single and double C-C bonds, rather than the actually observed 6-fold symmetric structure where all C-C bonds are equivalent. The observed benzene structure is a result of a delicate balance between the tendencies of the pi framework to create bond length alternation, and the sigma framework to resist bond length alternation.