Design and Simulation of a PV System Controlled through a Hybrid INC-PSO Algorithm using XSG Tool

Akram Amri, Intissar Moussa, A. Khedher
{"title":"Design and Simulation of a PV System Controlled through a Hybrid INC-PSO Algorithm using XSG Tool","authors":"Akram Amri, Intissar Moussa, A. Khedher","doi":"10.1109/SETIT54465.2022.9875738","DOIUrl":null,"url":null,"abstract":"This paper details the development of a hybrid algorithm for maximum power point tracking (MPPT) used for large PV systems under real conditions. In this algorithm, the incremental conductance algorithm (INC) is used in the initial phase of tracking, and the particle swarm optimization method (PSO) in the second phase. The methodology was simulated using the Xilinx System Generator (XSG) tool. The integration of artificial intelligence into the INC algorithm allows for faster convergence to the global maximum power point (GMPP). Simulation results prove that the proposed algorithm increases the efficiency, corrects the tracking direction and quickly reaches the steady state without oscillations.","PeriodicalId":126155,"journal":{"name":"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SETIT54465.2022.9875738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper details the development of a hybrid algorithm for maximum power point tracking (MPPT) used for large PV systems under real conditions. In this algorithm, the incremental conductance algorithm (INC) is used in the initial phase of tracking, and the particle swarm optimization method (PSO) in the second phase. The methodology was simulated using the Xilinx System Generator (XSG) tool. The integration of artificial intelligence into the INC algorithm allows for faster convergence to the global maximum power point (GMPP). Simulation results prove that the proposed algorithm increases the efficiency, corrects the tracking direction and quickly reaches the steady state without oscillations.
基于XSG工具的混合inco - pso算法控制的光伏系统设计与仿真
本文详细介绍了一种用于实际情况下大型光伏系统最大功率点跟踪(MPPT)的混合算法的开发。该算法在初始阶段采用增量电导算法(INC),在第二阶段采用粒子群优化方法(PSO)。使用Xilinx System Generator (XSG)工具对该方法进行了模拟。将人工智能集成到INC算法中可以更快地收敛到全局最大功率点(GMPP)。仿真结果表明,该算法提高了跟踪效率,修正了跟踪方向,快速达到无振荡的稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信