Global-Aware Registration of Less-Overlap RGB-D Scans

Che Sun, Yunde Jia, Yimin Guo, Yuwei Wu
{"title":"Global-Aware Registration of Less-Overlap RGB-D Scans","authors":"Che Sun, Yunde Jia, Yimin Guo, Yuwei Wu","doi":"10.1109/CVPR52688.2022.00625","DOIUrl":null,"url":null,"abstract":"We propose a novel method of registering less-overlap RGB-D scans. Our method learns global information of a scene to construct a panorama, and aligns RGB-D scans to the panorama to perform registration. Different from existing methods that use local feature points to register less-overlap RGB-D scans and mismatch too much, we use global information to guide the registration, thereby allevi-ating the mismatching problem by preserving global consis-tency of alignments. To this end, we build a scene inference network to construct the panorama representing global in-formation. We introduce a reinforcement learning strategy to iteratively align RGB-D scans with the panorama and re-fine the panorama representation, which reduces the noise of global information and preserves global consistency of both geometric and photometric alignments. Experimental results on benchmark datasets including SUNCG, Matterport, and ScanNet show the superiority of our method.","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.00625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose a novel method of registering less-overlap RGB-D scans. Our method learns global information of a scene to construct a panorama, and aligns RGB-D scans to the panorama to perform registration. Different from existing methods that use local feature points to register less-overlap RGB-D scans and mismatch too much, we use global information to guide the registration, thereby allevi-ating the mismatching problem by preserving global consis-tency of alignments. To this end, we build a scene inference network to construct the panorama representing global in-formation. We introduce a reinforcement learning strategy to iteratively align RGB-D scans with the panorama and re-fine the panorama representation, which reduces the noise of global information and preserves global consistency of both geometric and photometric alignments. Experimental results on benchmark datasets including SUNCG, Matterport, and ScanNet show the superiority of our method.
少重叠RGB-D扫描的全局感知配准
我们提出了一种新的RGB-D扫描低重叠配准方法。我们的方法学习场景的全局信息来构建全景图,并将RGB-D扫描与全景图对齐进行配准。不同于现有方法使用局部特征点配准重叠较少、配错过多的RGB-D扫描,我们使用全局信息来指导配准,从而通过保持对齐的全局一致性来缓解配准问题。为此,我们构建了一个场景推理网络来构建代表全局信息的全景图。我们引入了一种强化学习策略来迭代对齐RGB-D扫描与全景图,并重新细化全景图表示,从而减少了全局信息的噪声,并保持了几何和光度对齐的全局一致性。在SUNCG、Matterport和ScanNet等基准数据集上的实验结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信