A multivariable Steiglitz-McBride method

M. Ashari, M. Mboup, P. Regalia
{"title":"A multivariable Steiglitz-McBride method","authors":"M. Ashari, M. Mboup, P. Regalia","doi":"10.5281/ZENODO.36063","DOIUrl":null,"url":null,"abstract":"In this paper, we present an off-line multi-input/multi-output version of the Steiglitz-McBride method, as well as an analytic description of the set of its stationary points. As in the scalar case [13], the description is given in terms of first- and second-order interpolation constraints, respectively, on the model impulse response and covariance sequences. The constraints are related to the theory of g-Markov covariance equivalent realizations and generalize the work of Inouye [7] and King et al. [9].","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.36063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present an off-line multi-input/multi-output version of the Steiglitz-McBride method, as well as an analytic description of the set of its stationary points. As in the scalar case [13], the description is given in terms of first- and second-order interpolation constraints, respectively, on the model impulse response and covariance sequences. The constraints are related to the theory of g-Markov covariance equivalent realizations and generalize the work of Inouye [7] and King et al. [9].
一个多变量Steiglitz-McBride方法
本文给出了Steiglitz-McBride方法的一种离线多输入/多输出版本,并给出了该方法的平稳点集的解析描述。与标量情况[13]一样,分别用一阶和二阶插值约束对模型脉冲响应和协方差序列进行描述。这些约束与g-Markov协方差等价实现理论有关,并推广了Inouye[7]和King等人[7]的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信