A Probability Model for Projective Clustering on High Dimensional Data

Lifei Chen, Q. Jiang, Shengrui Wang
{"title":"A Probability Model for Projective Clustering on High Dimensional Data","authors":"Lifei Chen, Q. Jiang, Shengrui Wang","doi":"10.1109/ICDM.2008.15","DOIUrl":null,"url":null,"abstract":"Clustering high dimensional data is a big challenge in data mining due to the curse of dimensionality. To solve this problem, projective clustering has been defined as an extension of traditional clustering that seeks to find projected clusters in subsets of dimensions of a data space. In this paper, the problem of modeling projected clusters is first discussed, and an extended Gaussian model is proposed. Second, a general objective criterion used with k-means type projective clustering is presented based on the model. Finally, the expressions to learn model parameters are derived and then used in a new algorithm named FPC to perform fuzzy clustering on high dimensional data. The experimental results on document clustering show the effectiveness of the proposed clustering model.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Clustering high dimensional data is a big challenge in data mining due to the curse of dimensionality. To solve this problem, projective clustering has been defined as an extension of traditional clustering that seeks to find projected clusters in subsets of dimensions of a data space. In this paper, the problem of modeling projected clusters is first discussed, and an extended Gaussian model is proposed. Second, a general objective criterion used with k-means type projective clustering is presented based on the model. Finally, the expressions to learn model parameters are derived and then used in a new algorithm named FPC to perform fuzzy clustering on high dimensional data. The experimental results on document clustering show the effectiveness of the proposed clustering model.
高维数据投影聚类的概率模型
由于维度的诅咒,高维数据的聚类是数据挖掘中的一大挑战。为了解决这个问题,投影聚类被定义为传统聚类的扩展,它寻求在数据空间的维度子集中找到投影聚类。本文首先讨论了投影聚类的建模问题,提出了一种扩展的高斯模型。其次,基于该模型提出了用于k-means型投影聚类的一般客观准则。最后,推导了模型参数学习表达式,并将其应用于FPC算法对高维数据进行模糊聚类。文档聚类实验结果表明了该聚类模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信