System identification through neuro-fuzzy methodologies

A. Cucè, G. D'Angelo, M. Di Guardo, B. Giacalone, S. Mazzaglia, C. Vinci
{"title":"System identification through neuro-fuzzy methodologies","authors":"A. Cucè, G. D'Angelo, M. Di Guardo, B. Giacalone, S. Mazzaglia, C. Vinci","doi":"10.1109/ISNFS.1996.603830","DOIUrl":null,"url":null,"abstract":"The aim of the present work is to propose a way to identify the behaviour of an induction motor supplied by using a DC/AC converter controlled through a pulse width modulation (PWM) technique. Although a mathematical description of the motor is well-known in literature, the model is sensitive to parameters variations. Moreover it is impossible to modelize in a mathematical way the system composed by the motor and the inverter together. A neuro fuzzy network, trained with a set of I/O measures, it is able to identify the whole system. The results proposed show how the behaviour of the identified system matches the real one.","PeriodicalId":187481,"journal":{"name":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNFS.1996.603830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of the present work is to propose a way to identify the behaviour of an induction motor supplied by using a DC/AC converter controlled through a pulse width modulation (PWM) technique. Although a mathematical description of the motor is well-known in literature, the model is sensitive to parameters variations. Moreover it is impossible to modelize in a mathematical way the system composed by the motor and the inverter together. A neuro fuzzy network, trained with a set of I/O measures, it is able to identify the whole system. The results proposed show how the behaviour of the identified system matches the real one.
通过神经模糊方法进行系统辨识
本工作的目的是提出一种方法来识别通过脉冲宽度调制(PWM)技术控制的DC/AC转换器提供的感应电机的行为。虽然电机的数学描述在文献中是众所周知的,但该模型对参数变化很敏感。此外,用数学方法对由电动机和逆变器共同组成的系统进行建模是不可能的。用一组输入输出量训练的神经模糊网络,能够识别整个系统。所提出的结果显示了识别系统的行为如何与实际系统相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信