Lumos5G

Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu, Qingxu Liu, Rostand A. K. Fezeu, Udhaya Kumar Dayalan, Saurabh Verma, Peiqi Ji, Tao Li, Fengqi Qian, Zhi-Li Zhang
{"title":"Lumos5G","authors":"Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu, Qingxu Liu, Rostand A. K. Fezeu, Udhaya Kumar Dayalan, Saurabh Verma, Peiqi Ji, Tao Li, Fengqi Qian, Zhi-Li Zhang","doi":"10.1145/3419394.3423629","DOIUrl":null,"url":null,"abstract":"The emerging 5G services offer numerous new opportunities for networked applications. In this study, we seek to answer two key questions: i) is the throughput of mmWave 5G predictable, and ii) can we build \"good\" machine learning models for 5G throughput prediction? To this end, we conduct a measurement study of commercial mmWave 5G services in a major U.S. city, focusing on the throughput as perceived by applications running on user equipment (UE). Through extensive experiments and statistical analysis, we identify key UE-side factors that affect 5G performance and quantify to what extent the 5G throughput can be predicted. We then propose Lumos5G -- a composable machine learning (ML) framework that judiciously considers features and their combinations, and apply state-of-the-art ML techniques for making context-aware 5G throughput predictions. We demonstrate that our framework is able to achieve 1.37X to 4.84X reduction in prediction error compared to existing models. Our work can be viewed as a feasibility study for building what we envisage as a dynamic 5G throughput map (akin to Google traffic map). We believe this approach provides opportunities and challenges in building future 5G-aware apps.","PeriodicalId":255324,"journal":{"name":"Proceedings of the ACM Internet Measurement Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Internet Measurement Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3419394.3423629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The emerging 5G services offer numerous new opportunities for networked applications. In this study, we seek to answer two key questions: i) is the throughput of mmWave 5G predictable, and ii) can we build "good" machine learning models for 5G throughput prediction? To this end, we conduct a measurement study of commercial mmWave 5G services in a major U.S. city, focusing on the throughput as perceived by applications running on user equipment (UE). Through extensive experiments and statistical analysis, we identify key UE-side factors that affect 5G performance and quantify to what extent the 5G throughput can be predicted. We then propose Lumos5G -- a composable machine learning (ML) framework that judiciously considers features and their combinations, and apply state-of-the-art ML techniques for making context-aware 5G throughput predictions. We demonstrate that our framework is able to achieve 1.37X to 4.84X reduction in prediction error compared to existing models. Our work can be viewed as a feasibility study for building what we envisage as a dynamic 5G throughput map (akin to Google traffic map). We believe this approach provides opportunities and challenges in building future 5G-aware apps.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信