Subspace FDC for sharing distance estimation

Jian Zhang, Xiaohui Yuan, B. Buckles
{"title":"Subspace FDC for sharing distance estimation","authors":"Jian Zhang, Xiaohui Yuan, B. Buckles","doi":"10.1109/CEC.2004.1331105","DOIUrl":null,"url":null,"abstract":"Niching techniques diversify the population of evolutionary algorithms, encouraging heterogeneous convergence to multiple optima. The key to an effective diversification is identifying the similarity among individuals. With no prior knowledge of the fitness landscapes, it is usually determined by uninformative assumptions on the number of peaks. We propose a method to estimate the sharing distance and the corresponding population size. Using the probably approximately correct (PAC) learning theory and the e-cover concept, we derive the PAC neighbor distance of a local optimum. Within this neighborhood, uniform samples are drawn and we compute the subspace fitness distance correlation (FDC) coefficients. An algorithm is developed to estimate the granularity feature of the fitness landscapes. The sharing distance is determined from the granularity feature and furthermore, the population size is decided. Experiments demonstrate that by using the estimated population size and sharing distance an evolutionary algorithm (EA) correctly identifies multiple optima.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Niching techniques diversify the population of evolutionary algorithms, encouraging heterogeneous convergence to multiple optima. The key to an effective diversification is identifying the similarity among individuals. With no prior knowledge of the fitness landscapes, it is usually determined by uninformative assumptions on the number of peaks. We propose a method to estimate the sharing distance and the corresponding population size. Using the probably approximately correct (PAC) learning theory and the e-cover concept, we derive the PAC neighbor distance of a local optimum. Within this neighborhood, uniform samples are drawn and we compute the subspace fitness distance correlation (FDC) coefficients. An algorithm is developed to estimate the granularity feature of the fitness landscapes. The sharing distance is determined from the granularity feature and furthermore, the population size is decided. Experiments demonstrate that by using the estimated population size and sharing distance an evolutionary algorithm (EA) correctly identifies multiple optima.
共享距离估计的子空间FDC
小生境技术使进化算法的种群多样化,鼓励异构收敛到多个最优。有效分散投资的关键是识别个体之间的相似性。由于没有对适应度景观的先验知识,它通常是通过对峰值数量的无信息假设来确定的。我们提出了一种估算共享距离和相应种群规模的方法。利用可能近似正确(PAC)学习理论和e-cover概念,导出了局部最优的PAC近邻距离。在该邻域内绘制均匀样本并计算子空间适应度距离相关系数(FDC)。提出了一种估计适应度景观粒度特征的算法。根据粒度特征确定共享距离,进而确定种群大小。实验表明,进化算法利用估计的种群大小和共享距离可以正确地识别出多个最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信