Analysis of Solutions for a Reaction-Diffusion Epidemic Model

Khelifa Bouaziz, Redouane Douaifia, S. Abdelmalek
{"title":"Analysis of Solutions for a Reaction-Diffusion Epidemic Model","authors":"Khelifa Bouaziz, Redouane Douaifia, S. Abdelmalek","doi":"10.1109/ICRAMI52622.2021.9585987","DOIUrl":null,"url":null,"abstract":"This work mainly focuses on the dynamics of an epidemiologically emerging reaction-diffusion system. We establish global presence and the outcomes of asymptotic local and global stability to resolve the proposed system for a fairly broad class of nonlinearity that describes the transmission of an infectious disease between individuals by means of the appropriate Lyapunov function. the basic reproduction number can play a role in determining whether a disease will become extinct or persistent. Finally, we present an example that clarifies and confirms the results of the study throughout the paper.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work mainly focuses on the dynamics of an epidemiologically emerging reaction-diffusion system. We establish global presence and the outcomes of asymptotic local and global stability to resolve the proposed system for a fairly broad class of nonlinearity that describes the transmission of an infectious disease between individuals by means of the appropriate Lyapunov function. the basic reproduction number can play a role in determining whether a disease will become extinct or persistent. Finally, we present an example that clarifies and confirms the results of the study throughout the paper.
一类反应-扩散流行病模型解的分析
这项工作主要集中在流行病学新出现的反应扩散系统的动力学。我们建立了全局存在性和渐近局部稳定性和全局稳定性的结果,以解决所提出的系统对于一类相当广泛的非线性,描述传染病的传播个体通过适当的Lyapunov函数。基本繁殖数可以决定一种疾病是灭绝还是持续存在。最后,我们给出了一个例子来澄清和证实整个论文的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信