Using Modified Contour Features and SVM Based Classifier for the Recognition of Persian/Arabic Handwritten Numerals

Alireza Alaei, U. Pal, P. Nagabhushan
{"title":"Using Modified Contour Features and SVM Based Classifier for the Recognition of Persian/Arabic Handwritten Numerals","authors":"Alireza Alaei, U. Pal, P. Nagabhushan","doi":"10.1109/ICAPR.2009.14","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust and efficient feature set based on modified contour chain code to achieve higher recognition accuracy of Persian/Arabic numerals. In classification part, we employ support vector machine (SVM) as classifier. Feature set consists of 196 dimensions, which are the chain-code direction frequencies in the contour pixels of input image. We evaluated our scheme on 80,000 handwritten samples of Persian numerals. Using 60,000 samples for training, we tested our scheme on other 20,000 samples and obtained 98.71% correct recognition rate. Further, we obtained 99.37% accuracy using five-fold cross validation technique on 80,000 dataset.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

In this paper, we propose a robust and efficient feature set based on modified contour chain code to achieve higher recognition accuracy of Persian/Arabic numerals. In classification part, we employ support vector machine (SVM) as classifier. Feature set consists of 196 dimensions, which are the chain-code direction frequencies in the contour pixels of input image. We evaluated our scheme on 80,000 handwritten samples of Persian numerals. Using 60,000 samples for training, we tested our scheme on other 20,000 samples and obtained 98.71% correct recognition rate. Further, we obtained 99.37% accuracy using five-fold cross validation technique on 80,000 dataset.
基于改进轮廓特征和SVM分类器的波斯语/阿拉伯语手写数字识别
本文提出了一种基于改进轮廓链码的鲁棒高效特征集,以提高波斯语/阿拉伯语数字的识别精度。在分类部分,我们采用支持向量机(SVM)作为分类器。特征集由196个维度组成,这些维度是输入图像轮廓像素中的链码方向频率。我们在80,000个手写的波斯数字样本上评估了我们的方案。我们使用6万个样本进行训练,在另外2万个样本上测试我们的方案,获得了98.71%的正确识别率。此外,我们在80,000个数据集上使用五重交叉验证技术获得了99.37%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信