Reconfigurable neurons - making the most of configurable logic blocks (CLBs)

A. Ghani, C. See, H. Migdadi, R. Asif, R. Abd‐Alhameed, J. Noras
{"title":"Reconfigurable neurons - making the most of configurable logic blocks (CLBs)","authors":"A. Ghani, C. See, H. Migdadi, R. Asif, R. Abd‐Alhameed, J. Noras","doi":"10.1109/ITECHA.2015.7317451","DOIUrl":null,"url":null,"abstract":"An area-efficient hardware architecture is used to map fully parallel cortical columns on Field Programmable Gate Arrays (FPGA) is presented in this paper. To demonstrate the concept of this work, the proposed architecture is shown at the system level and benchmarked with image and speech recognition applications. Due to the spatio-temporal nature of spiking neurons, this has allowed such architectures to map on FPGAs in which communication can be performed through the use of spikes and signal can be represented in binary form. The process and viability of designing and implementing the multiple recurrent neural reservoirs with a novel multiplier-less reconfigurable architectures is described.","PeriodicalId":161782,"journal":{"name":"2015 Internet Technologies and Applications (ITA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Internet Technologies and Applications (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECHA.2015.7317451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An area-efficient hardware architecture is used to map fully parallel cortical columns on Field Programmable Gate Arrays (FPGA) is presented in this paper. To demonstrate the concept of this work, the proposed architecture is shown at the system level and benchmarked with image and speech recognition applications. Due to the spatio-temporal nature of spiking neurons, this has allowed such architectures to map on FPGAs in which communication can be performed through the use of spikes and signal can be represented in binary form. The process and viability of designing and implementing the multiple recurrent neural reservoirs with a novel multiplier-less reconfigurable architectures is described.
可重构神经元——充分利用可配置逻辑块(clb)
本文提出了一种用于在现场可编程门阵列(FPGA)上映射完全并行皮质列的面积高效硬件架构。为了演示这项工作的概念,所提出的架构在系统级别上显示,并与图像和语音识别应用程序进行基准测试。由于尖峰神经元的时空性质,这使得这种架构可以映射到fpga上,其中可以通过使用尖峰来执行通信,并且信号可以以二进制形式表示。描述了设计和实现具有新型无乘法器可重构结构的多循环神经储层的过程和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信