Extracting top-k most influential nodes by activity analysis

Myungcheol Doo, Ling Liu
{"title":"Extracting top-k most influential nodes by activity analysis","authors":"Myungcheol Doo, Ling Liu","doi":"10.1109/IRI.2014.7051894","DOIUrl":null,"url":null,"abstract":"Can we statistically compute social influence and understand quantitatively to what extent people are likely to be influenced by the opinion or the decision of their friends, friends of friends, or acquaintances? An in-depth understanding of such social influence and the diffusion process of such social influence will help us better address the question of to what extent the `word of mouth' effects will take hold on social networks. Most of the existing social influence models to define the influence diffusion are solely based on topological connectivity of social network nodes. In this paper, we presented an activity-base social influence model. Our experimental results show that activity-based social influence is more effective in understanding the viral marketing effects on social networks.","PeriodicalId":360013,"journal":{"name":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2014.7051894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Can we statistically compute social influence and understand quantitatively to what extent people are likely to be influenced by the opinion or the decision of their friends, friends of friends, or acquaintances? An in-depth understanding of such social influence and the diffusion process of such social influence will help us better address the question of to what extent the `word of mouth' effects will take hold on social networks. Most of the existing social influence models to define the influence diffusion are solely based on topological connectivity of social network nodes. In this paper, we presented an activity-base social influence model. Our experimental results show that activity-based social influence is more effective in understanding the viral marketing effects on social networks.
通过活动分析提取top-k最具影响力的节点
我们能否统计地计算社会影响,并定量地了解人们可能受到其朋友、朋友的朋友或熟人的意见或决定的影响程度?深入了解这种社会影响和这种社会影响的扩散过程,将有助于我们更好地解决“口碑”效应将在多大程度上影响社交网络的问题。现有的社会影响模型大多仅基于社会网络节点的拓扑连通性来定义影响扩散。本文提出了一个基于活动的社会影响模型。我们的实验结果表明,基于活动的社会影响更有效地理解了病毒式营销对社会网络的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信