Asymptotic analysis of an algorithm for identification of quantized AR time-series

V. Krishnamurthy, H. Poor
{"title":"Asymptotic analysis of an algorithm for identification of quantized AR time-series","authors":"V. Krishnamurthy, H. Poor","doi":"10.1109/ICASSP.1995.480673","DOIUrl":null,"url":null,"abstract":"Krishnamurthy and Mareels presented a parameter estimation algorithm called the binary series estimation algorithm (BSEA) for Gaussian auto-regressive (AR) time series given 1-bit quantized noisy measurements. The present authors carry out an asymptotic analysis of the BSEA for Gaussian AR models. In particular, from a central limit theorem they obtain expressions for the asymptotic covariances of the parameter estimates. From this they: (1) Present an algorithm for estimating the order of an AR series from one-bit quantized measurements. (2) Theoretically they justify why BSEA can yield better estimates than the Yule-Walker methods in some cases.","PeriodicalId":300119,"journal":{"name":"1995 International Conference on Acoustics, Speech, and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1995 International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1995.480673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Krishnamurthy and Mareels presented a parameter estimation algorithm called the binary series estimation algorithm (BSEA) for Gaussian auto-regressive (AR) time series given 1-bit quantized noisy measurements. The present authors carry out an asymptotic analysis of the BSEA for Gaussian AR models. In particular, from a central limit theorem they obtain expressions for the asymptotic covariances of the parameter estimates. From this they: (1) Present an algorithm for estimating the order of an AR series from one-bit quantized measurements. (2) Theoretically they justify why BSEA can yield better estimates than the Yule-Walker methods in some cases.
一种量化AR时间序列识别算法的渐近分析
Krishnamurthy和Mareels针对给定1比特量化噪声的高斯自回归(AR)时间序列,提出了一种参数估计算法——二值序列估计算法(BSEA)。本文作者对高斯AR模型的BSEA进行了渐近分析。特别地,他们从中心极限定理得到了参数估计的渐近协方差的表达式。在此基础上,他们:(1)提出了一种从一比特量化测量中估计AR序列阶数的算法。(2)从理论上讲,他们证明了为什么在某些情况下BSEA可以比Yule-Walker方法产生更好的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信