Optimal control under nonconvexity: A generalized Hamiltonian approach

J. Chavas
{"title":"Optimal control under nonconvexity: A generalized Hamiltonian approach","authors":"J. Chavas","doi":"10.1002/oca.2998","DOIUrl":null,"url":null,"abstract":"This article extends the analysis of optimal control based on a generalized Hamiltonian which covers situations of nonconvexity. The approach offers several key advantages. First, by identifying a global solution to a constrained optimization problem, the generalized Hamiltonian approach solves the problem of distinguishing between a global optimum and the (possibly many) nonoptimal points satisfying the Pontryagyn principle under nonconvexity. Second, in our generalized approach, interpreting the slopes of the separating hypersurface as shadow prices of the states continues to hold. Third, we discuss how the generalized Hamiltonian approach can be used in solving dynamic optimization problems under nonconvexity.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.2998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article extends the analysis of optimal control based on a generalized Hamiltonian which covers situations of nonconvexity. The approach offers several key advantages. First, by identifying a global solution to a constrained optimization problem, the generalized Hamiltonian approach solves the problem of distinguishing between a global optimum and the (possibly many) nonoptimal points satisfying the Pontryagyn principle under nonconvexity. Second, in our generalized approach, interpreting the slopes of the separating hypersurface as shadow prices of the states continues to hold. Third, we discuss how the generalized Hamiltonian approach can be used in solving dynamic optimization problems under nonconvexity.
非凸性下的最优控制:一种广义哈密顿方法
本文扩展了基于广义哈密顿量的最优控制分析,该分析涵盖了非凸情况。这种方法提供了几个关键优势。首先,通过确定约束优化问题的全局解,广义哈密顿方法解决了在非凸性条件下,区分全局最优点与满足Pontryagyn原理的(可能有许多)非最优点的问题。其次,在我们的广义方法中,将分离超曲面的斜率解释为各州的影子价格继续保持不变。第三,讨论了如何将广义哈密顿方法应用于求解非凸条件下的动态优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信