Data fusion of heterogeneous network based on BP neural network and improved SEP

Yu Cao, Linghua Zhang
{"title":"Data fusion of heterogeneous network based on BP neural network and improved SEP","authors":"Yu Cao, Linghua Zhang","doi":"10.1109/ICAIT.2017.8388903","DOIUrl":null,"url":null,"abstract":"This paper proposes a data fusion method for Heterogeneous Wireless Sensor Networks (WSN). On the basis of the classic heterogeneous network clustering algorithm Stable Election Protocol(SEP), the intermediate nodes are added to optimize the information transfer within the cluster, and the Back Propagation(BP) neural network is used to fuse the data received from the cluster head into the cluster. The simulation results show that the method can greatly improve the energy consumption of nodes and the lifetime of wireless sensor networks.","PeriodicalId":376884,"journal":{"name":"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT.2017.8388903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper proposes a data fusion method for Heterogeneous Wireless Sensor Networks (WSN). On the basis of the classic heterogeneous network clustering algorithm Stable Election Protocol(SEP), the intermediate nodes are added to optimize the information transfer within the cluster, and the Back Propagation(BP) neural network is used to fuse the data received from the cluster head into the cluster. The simulation results show that the method can greatly improve the energy consumption of nodes and the lifetime of wireless sensor networks.
基于BP神经网络和改进SEP的异构网络数据融合
提出了一种异构无线传感器网络(WSN)的数据融合方法。在经典的异构网络聚类算法稳定选举协议(SEP)的基础上,增加中间节点优化簇内信息传递,并利用BP神经网络将簇头接收到的数据融合到簇内。仿真结果表明,该方法可以大大提高节点的能量消耗和无线传感器网络的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信