Stability Problems in Symbolic Integration

Shaoshi Chen
{"title":"Stability Problems in Symbolic Integration","authors":"Shaoshi Chen","doi":"10.1145/3476446.3535502","DOIUrl":null,"url":null,"abstract":"This paper aims at initializing a dynamical aspect of symbolic integration by studying stability problems in differential fields. We first show some basic properties of stable elementary functions and then characterize three special families of stable elementary functions including rational functions, logarithmic functions, and exponential functions. We prove that all D-finite power series are eventually stable. Some problems for future studies are proposed towards deeper dynamical studies in differential algebra.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper aims at initializing a dynamical aspect of symbolic integration by studying stability problems in differential fields. We first show some basic properties of stable elementary functions and then characterize three special families of stable elementary functions including rational functions, logarithmic functions, and exponential functions. We prove that all D-finite power series are eventually stable. Some problems for future studies are proposed towards deeper dynamical studies in differential algebra.
符号积分中的稳定性问题
本文旨在通过研究微分域的稳定性问题来初始化符号积分的动力学方面。首先给出了稳定初等函数的一些基本性质,然后刻画了稳定初等函数的三个特殊族,包括有理函数、对数函数和指数函数。证明了所有的d有限幂级数都是最终稳定的。对微分代数动力学的深入研究提出了一些有待进一步研究的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信