Combined SoC and SoE Estimation of Lithium-ion Battery using Multi-layer Feedforward Neural Network

Sakshi Sharma, Pankaj D. Achlerkar, Prashant Shrivastava, A. Garg, B. K. Panigrahi
{"title":"Combined SoC and SoE Estimation of Lithium-ion Battery using Multi-layer Feedforward Neural Network","authors":"Sakshi Sharma, Pankaj D. Achlerkar, Prashant Shrivastava, A. Garg, B. K. Panigrahi","doi":"10.1109/PEDES56012.2022.10080110","DOIUrl":null,"url":null,"abstract":"The estimation of state of charge (SoC) and state of energy (SoE) serves the premise of an efficient Battery Management System(BMS). The estimation technique should be able to capture the dynamics the battery is subjected to, along with its inherent non-linear behaviour. This study proposes a combined SoC and SoE estimation framework using multi-layer feedforward neural network. The experimental results validate the higher accuracy and robustness of the proposed method under dynamic driving and temperature conditions. The Mean Square Error(MSE) obtained during the testing of the algorithm with various drive cycles is found to be quite promising.","PeriodicalId":161541,"journal":{"name":"2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDES56012.2022.10080110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of state of charge (SoC) and state of energy (SoE) serves the premise of an efficient Battery Management System(BMS). The estimation technique should be able to capture the dynamics the battery is subjected to, along with its inherent non-linear behaviour. This study proposes a combined SoC and SoE estimation framework using multi-layer feedforward neural network. The experimental results validate the higher accuracy and robustness of the proposed method under dynamic driving and temperature conditions. The Mean Square Error(MSE) obtained during the testing of the algorithm with various drive cycles is found to be quite promising.
基于多层前馈神经网络的锂离子电池SoC和SoE联合估计
电池荷电状态(SoC)和能量状态(SoE)的估计是高效电池管理系统(BMS)的前提。估计技术应该能够捕捉电池受到的动态,以及其固有的非线性行为。本文提出了一种基于多层前馈神经网络的SoC和SoE组合估计框架。实验结果验证了该方法在动态驱动和温度条件下具有较高的精度和鲁棒性。在不同驱动周期的测试过程中,得到的均方误差(MSE)是很有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信