Risk Apportionment Via Bivariate Stochastic Dominance

Octave Jokung
{"title":"Risk Apportionment Via Bivariate Stochastic Dominance","authors":"Octave Jokung","doi":"10.2139/ssrn.1550225","DOIUrl":null,"url":null,"abstract":"This paper extends to bivariate utility functions, Eeckhoudt et al.’s (2009) result for the combination of ‘bad’ and ‘good’. The decision-maker prefers to get some of the ‘good’ and some of the ‘bad’ to taking a chance on all the ‘good’ or all the ‘bad’ where ‘bad’ is defined via (N,M)-increasing concave order. We generalize the concept of bivariate risk aversion introduced by Richard (1975) to higher orders. Importantly, in the bivariate framework, preference for the lottery [(X,T);(Y,Z)] to the lottery [(X,Z);(Y,T)] when (X,Z) dominates (Y,T) via (N,M)-increasing concave order allows us to assert bivariate risk apportionment of order (N,M) and to extend the concept of risk apportionment defined by Eeckhoudt and Schlesinger (2006).","PeriodicalId":207453,"journal":{"name":"ERN: Econometric Modeling in Microeconomics (Topic)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Econometric Modeling in Microeconomics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1550225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper extends to bivariate utility functions, Eeckhoudt et al.’s (2009) result for the combination of ‘bad’ and ‘good’. The decision-maker prefers to get some of the ‘good’ and some of the ‘bad’ to taking a chance on all the ‘good’ or all the ‘bad’ where ‘bad’ is defined via (N,M)-increasing concave order. We generalize the concept of bivariate risk aversion introduced by Richard (1975) to higher orders. Importantly, in the bivariate framework, preference for the lottery [(X,T);(Y,Z)] to the lottery [(X,Z);(Y,T)] when (X,Z) dominates (Y,T) via (N,M)-increasing concave order allows us to assert bivariate risk apportionment of order (N,M) and to extend the concept of risk apportionment defined by Eeckhoudt and Schlesinger (2006).
基于双变量随机优势的风险分配
本文扩展到二元效用函数,Eeckhoudt等人(2009)对“坏”和“好”组合的结果。决策者更倾向于获得一些“好”和一些“坏”,而不是冒险获得所有“好”或所有“坏”,其中“坏”是通过(N,M)递增的凹顺序定义的。我们将Richard(1975)引入的二元风险规避概念推广到更高阶。重要的是,在二元框架中,当(X,Z)通过(N,M)增加凹阶支配(Y,T)时,对彩票[(X,T);(Y,Z)]的偏好使我们能够断言(N,M)阶的二元风险分配,并扩展Eeckhoudt和Schlesinger(2006)定义的风险分配概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信