Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning

Wuyang Zhang, Jianming Ma
{"title":"Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning","authors":"Wuyang Zhang, Jianming Ma","doi":"10.1109/UV56588.2022.10185494","DOIUrl":null,"url":null,"abstract":"This paper aims to create an image captioning novel architecture that infuses Grid and Region-based image caption transformer, ResNet, and BART language model to offer a more detail-oriented image captioning model. Conventional state-of-the-art image captioning models mainly focuses on region-based features. They rely on decent object detector architectures like Faster R-CNN to extract object-level information to describe the image’s content. Nevertheless, they cannot remove contextual information, high computational costs, and the ability to introduce in-depth external details of objects presented in the images—the replacement of conventional CNN-based detectors results in faster computation. The experiment can generate image captions comparatively fast with higher accuracy and details with contextual information.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to create an image captioning novel architecture that infuses Grid and Region-based image caption transformer, ResNet, and BART language model to offer a more detail-oriented image captioning model. Conventional state-of-the-art image captioning models mainly focuses on region-based features. They rely on decent object detector architectures like Faster R-CNN to extract object-level information to describe the image’s content. Nevertheless, they cannot remove contextual information, high computational costs, and the ability to introduce in-depth external details of objects presented in the images—the replacement of conventional CNN-based detectors results in faster computation. The experiment can generate image captions comparatively fast with higher accuracy and details with contextual information.
图像说明使用GRIT,便携式ResNet和BART上下文调整进行增强
本文旨在创建一种新的图像字幕架构,该架构注入了基于网格和区域的图像字幕转换器、ResNet和BART语言模型,以提供更面向细节的图像字幕模型。传统的图像字幕模型主要关注基于区域的特征。他们依靠体面的对象检测器架构,如Faster R-CNN来提取对象级信息来描述图像的内容。然而,它们不能去除上下文信息,计算成本高,并且能够引入图像中呈现的物体的深入外部细节-取代传统的基于cnn的检测器导致更快的计算。该实验能够相对较快地生成图像标题,具有较高的准确性,并且具有上下文信息的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信