Leveraging Cross-Lingual Tweets in Location Recognition

Balsam Alkouz, Z. Aghbari
{"title":"Leveraging Cross-Lingual Tweets in Location Recognition","authors":"Balsam Alkouz, Z. Aghbari","doi":"10.1109/EIT.2018.8500105","DOIUrl":null,"url":null,"abstract":"The increased popularity of micro-blogging applications (e.g. Twitter) have resulted in the creation of large streams data. Such data provides a great opportunity for researchers to explore event detection. In particular, road traffic detection is of great importance to various applications, i.e. Intelligent Transportation Systems. Recognizing locations in the text of tweets plays an essential role in traffic detection. In this paper, we propose a novel method to identify locations in tweets using cross-lingual (English and Arabic) data collected from Twitter. The collected data (tweets) will be filtered to give emphasis to the United Arab Emirates, UAE, region. Then, features are extracted from the data to classify the tweets into traffic-reporting and non-reporting. The classified tweets are geoparsed and geocoded to acquire the location of reported traffic.","PeriodicalId":188414,"journal":{"name":"2018 IEEE International Conference on Electro/Information Technology (EIT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Electro/Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT.2018.8500105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The increased popularity of micro-blogging applications (e.g. Twitter) have resulted in the creation of large streams data. Such data provides a great opportunity for researchers to explore event detection. In particular, road traffic detection is of great importance to various applications, i.e. Intelligent Transportation Systems. Recognizing locations in the text of tweets plays an essential role in traffic detection. In this paper, we propose a novel method to identify locations in tweets using cross-lingual (English and Arabic) data collected from Twitter. The collected data (tweets) will be filtered to give emphasis to the United Arab Emirates, UAE, region. Then, features are extracted from the data to classify the tweets into traffic-reporting and non-reporting. The classified tweets are geoparsed and geocoded to acquire the location of reported traffic.
在位置识别中利用跨语言推文
微博客应用程序(如Twitter)的日益普及导致了大量数据流的产生。这些数据为研究人员探索事件检测提供了一个很好的机会。特别是,道路交通检测对于智能交通系统等各种应用具有重要意义。在推文文本中识别位置在交通检测中起着至关重要的作用。在本文中,我们提出了一种利用从Twitter收集的跨语言(英语和阿拉伯语)数据来识别推文中位置的新方法。收集到的数据(推文)将被过滤,以强调阿拉伯联合酋长国,阿联酋,地区。然后,从数据中提取特征,将推文分为流量报告和非流量报告。分类推文被地理解析和地理编码,以获取报告流量的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信