Reinforcement Learning in Railway Timetable Rescheduling

Yongqiu Zhu, Hongrui Wang, R. Goverde
{"title":"Reinforcement Learning in Railway Timetable Rescheduling","authors":"Yongqiu Zhu, Hongrui Wang, R. Goverde","doi":"10.1109/ITSC45102.2020.9294188","DOIUrl":null,"url":null,"abstract":"Real-time railway traffic management is important for the daily operations of railway systems. It predicts and resolves operational conflicts caused by events like excessive passenger boardings/alightings. Traditional optimization methods for this problem are restricted by the size of the problem instances. Therefore, this paper proposes a reinforcement learning-based timetable rescheduling method. Our method learns how to reschedule a timetable off-line and then can be applied online to make an optimal dispatching decision immediately by sensing the current state of the railway environment. Experiments show that the rescheduling solution obtained by the proposed reinforcement learning method is affected by the state representation of the railway environment. The proposed method was tested to a part of the Dutch railways considering scenarios with single initial train delays and multiple initial train delays. In both cases, our method found high-quality rescheduling solutions within limited training episodes.","PeriodicalId":394538,"journal":{"name":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC45102.2020.9294188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Real-time railway traffic management is important for the daily operations of railway systems. It predicts and resolves operational conflicts caused by events like excessive passenger boardings/alightings. Traditional optimization methods for this problem are restricted by the size of the problem instances. Therefore, this paper proposes a reinforcement learning-based timetable rescheduling method. Our method learns how to reschedule a timetable off-line and then can be applied online to make an optimal dispatching decision immediately by sensing the current state of the railway environment. Experiments show that the rescheduling solution obtained by the proposed reinforcement learning method is affected by the state representation of the railway environment. The proposed method was tested to a part of the Dutch railways considering scenarios with single initial train delays and multiple initial train delays. In both cases, our method found high-quality rescheduling solutions within limited training episodes.
铁路时刻表重新调度中的强化学习
铁路交通实时管理对铁路系统的日常运营具有重要意义。它可以预测和解决由乘客过多登机/下飞机等事件引起的运营冲突。传统的优化方法受到问题实例规模的限制。因此,本文提出了一种基于强化学习的时间表重调度方法。该方法在离线状态下学习如何重新调度列车时刻表,然后在线上应用,通过感知铁路环境的当前状态,立即做出最优调度决策。实验表明,本文提出的强化学习方法得到的重调度解受到铁路环境状态表示的影响。提出的方法在荷兰部分铁路上进行了测试,考虑了单次初始列车延误和多次初始列车延误的情况。在这两种情况下,我们的方法在有限的训练集内找到了高质量的重新调度解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信