Segmentation method for breast tumor diagnosis based on Artificial Neural Network algorithm applied to dynamic 18F-FDG PET images

Xinyue Zhang, Yinlin Li, R. Sánchez-Jurado, A. Pardo, Andrew M. Polemi, Antonio J. González, J. Alamo, J. Ferrer, S. Majewski, B. Kundu
{"title":"Segmentation method for breast tumor diagnosis based on Artificial Neural Network algorithm applied to dynamic 18F-FDG PET images","authors":"Xinyue Zhang, Yinlin Li, R. Sánchez-Jurado, A. Pardo, Andrew M. Polemi, Antonio J. González, J. Alamo, J. Ferrer, S. Majewski, B. Kundu","doi":"10.1109/NSSMIC.2015.7582056","DOIUrl":null,"url":null,"abstract":"To establish an accurate and automatic image segmentation method for extracting the tumor from the healthy tissue using the dedicated 18F-FDG Mammography with Molecular Imaging (MAMMI) Positron Emission Tomography (PET) dynamic images of breast in vivo, the paper presents a novel method using Artificial Neural Network (ANN) combined with time activity curves (TAC) of each voxel as input vector. TACs voxel by voxel were obtained from PET images with average filtering and least-squares fitting algorithm to improve the signal noise ratio (SNR). The data was then normalized and constructed as input feature vectors of the ANN network to train or segment the tumor regions. The initial pilot validation with 2 patient's data of the proposed method using FDG has shown promising results.","PeriodicalId":106811,"journal":{"name":"2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2015.7582056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To establish an accurate and automatic image segmentation method for extracting the tumor from the healthy tissue using the dedicated 18F-FDG Mammography with Molecular Imaging (MAMMI) Positron Emission Tomography (PET) dynamic images of breast in vivo, the paper presents a novel method using Artificial Neural Network (ANN) combined with time activity curves (TAC) of each voxel as input vector. TACs voxel by voxel were obtained from PET images with average filtering and least-squares fitting algorithm to improve the signal noise ratio (SNR). The data was then normalized and constructed as input feature vectors of the ANN network to train or segment the tumor regions. The initial pilot validation with 2 patient's data of the proposed method using FDG has shown promising results.
基于人工神经网络算法的乳腺肿瘤诊断分割方法应用于动态18F-FDG PET图像
为了建立一种基于18F-FDG乳腺分子成像(MAMMI)正电子发射断层扫描(PET)动态活体乳腺图像的准确、自动的图像分割方法,提出了一种基于人工神经网络(ANN)结合各体素时间活动曲线(TAC)作为输入向量的方法。利用平均滤波和最小二乘拟合算法对PET图像逐体素提取tac,提高信噪比。然后将数据归一化并构建为人工神经网络的输入特征向量,以训练或分割肿瘤区域。使用FDG的2例患者数据的初步中试验证显示出有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信