{"title":"A Theory of Occlusion for Improving Rendering Quality of Views","authors":"Yijun Zeng, Weiyan Chen, Mengqin Bai, Yangdong Zeng, Changjian Zhu","doi":"10.1109/VCIP49819.2020.9301887","DOIUrl":null,"url":null,"abstract":"Occlusion lack compensation (OLC) is a multiplexing gain optimization data acquisition and novel views rendering strategy for light field rendering (LFR). While the achieved OLC is much higher than previously thought possible, the improvement comes at the cost of requiring more scene information. This can capture more detailed scene information, including geometric information, texture information and depth information, by learning and training methods. In this paper, we develop an occlusion compensation (OCC) model based on restricted boltzmann machine (RBM) to compensate for lack scene information caused by occlusion. We show that occlusion will cause the lack of captured scene information, which will lead to the decline of view rendering quality. The OCC model can estimate and compensate the lack information of occlusion edge by learning. We present experimental results to demonstrate the performance of OCC model with analog training, verify our theoretical analysis, and extend our conclusions on optimal rendering quality of light field.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Occlusion lack compensation (OLC) is a multiplexing gain optimization data acquisition and novel views rendering strategy for light field rendering (LFR). While the achieved OLC is much higher than previously thought possible, the improvement comes at the cost of requiring more scene information. This can capture more detailed scene information, including geometric information, texture information and depth information, by learning and training methods. In this paper, we develop an occlusion compensation (OCC) model based on restricted boltzmann machine (RBM) to compensate for lack scene information caused by occlusion. We show that occlusion will cause the lack of captured scene information, which will lead to the decline of view rendering quality. The OCC model can estimate and compensate the lack information of occlusion edge by learning. We present experimental results to demonstrate the performance of OCC model with analog training, verify our theoretical analysis, and extend our conclusions on optimal rendering quality of light field.