{"title":"Numerical sign problem and the tempered Lefschetz thimble method","authors":"M. Fukuma, N. Matsumoto, Y. Namekawa","doi":"10.22323/1.406.0254","DOIUrl":null,"url":null,"abstract":"The numerical sign problem is a major obstacle to thequantitative understanding of manyimportant physical systems with first-principles calculations. Typical examples for such systems include finite-density QCD, strongly-correlated electron systems and frustrated spin systems, as well as the real-time dynamics of quantum systems. In this talk, we argue that the tempered Lefschetz thimble method (TLTM) [M. Fukuma and N. Umeda, arXiv:1703.00861] and its extension, the worldvolume tempered Lefschetz thimble method (WV-TLTM) [M. Fukuma and N. Matsumoto, arXiv:2012.08468], may be a reliable and versatile solution to the sign problem. We demonstrate the effectiveness of the algorithm by exemplifying a successful application of WV-TLTM to the Stephanov model, which is an important toy model of finite-density QCD. We also discuss the computational scaling of WV-TLTM.","PeriodicalId":131792,"journal":{"name":"Proceedings of Corfu Summer Institute 2021 \"School and Workshops on Elementary Particle Physics and Gravity\" — PoS(CORFU2021)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Corfu Summer Institute 2021 \"School and Workshops on Elementary Particle Physics and Gravity\" — PoS(CORFU2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.406.0254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The numerical sign problem is a major obstacle to thequantitative understanding of manyimportant physical systems with first-principles calculations. Typical examples for such systems include finite-density QCD, strongly-correlated electron systems and frustrated spin systems, as well as the real-time dynamics of quantum systems. In this talk, we argue that the tempered Lefschetz thimble method (TLTM) [M. Fukuma and N. Umeda, arXiv:1703.00861] and its extension, the worldvolume tempered Lefschetz thimble method (WV-TLTM) [M. Fukuma and N. Matsumoto, arXiv:2012.08468], may be a reliable and versatile solution to the sign problem. We demonstrate the effectiveness of the algorithm by exemplifying a successful application of WV-TLTM to the Stephanov model, which is an important toy model of finite-density QCD. We also discuss the computational scaling of WV-TLTM.