Parameter estimation using the autocorrelation of the discrete Fourier transform

M. Manry, C. T. Huddleston
{"title":"Parameter estimation using the autocorrelation of the discrete Fourier transform","authors":"M. Manry, C. T. Huddleston","doi":"10.1109/ICASSP.1987.1169901","DOIUrl":null,"url":null,"abstract":"Optimal parameter estimation algorithms are developed using the maximum likelihood technique, when no statistics are available for the parameter. Sub-optimal parameter estimates, using one sample of the autocorrelation of the DFT, have been developed previously. In this paper, maximum likelihood estimates are derived, given the auto-correlation function of the received signal's DFT. These estimates sometimes require less computation time than conventional estimates, and frequently have a closed form or simple iterative implementation.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Optimal parameter estimation algorithms are developed using the maximum likelihood technique, when no statistics are available for the parameter. Sub-optimal parameter estimates, using one sample of the autocorrelation of the DFT, have been developed previously. In this paper, maximum likelihood estimates are derived, given the auto-correlation function of the received signal's DFT. These estimates sometimes require less computation time than conventional estimates, and frequently have a closed form or simple iterative implementation.
离散傅里叶变换的自相关参数估计
当没有可用的参数统计时,使用最大似然技术开发了最优参数估计算法。次优参数估计,使用一个样本的自相关的DFT,已经开发了以前。在本文中,给出了接收信号的DFT的自相关函数,导出了极大似然估计。这些评估有时需要比传统评估更少的计算时间,并且经常具有封闭的形式或简单的迭代实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信