Geometric decomposition and potential-based representation of nonlinear systems

M. Guay, N. Hudon, Kai Hoffner
{"title":"Geometric decomposition and potential-based representation of nonlinear systems","authors":"M. Guay, N. Hudon, Kai Hoffner","doi":"10.1109/ACC.2013.6580149","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of representing a sufficiently smooth nonlinear dynamical as a structured potential-driven system. The proposed approach is based on a decomposition of a differential one-form that encodes the divergence of the given vector fields into its exact and anti-exact components, and into its co-exact and anti-coexact components. The decomposition method, based on the Hodge decomposition theorem, is rendered constructive by introducing a dual operator to the standard homotopy operator. The dual operator inverts locally the co-differential operator, and is used in the present paper to identify the structure of the dynamics. Applications of the proposed approach to gradient systems, Hamiltonian systems, and generalized Hamiltonian systems are given to illustrate the proposed approach.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6580149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper considers the problem of representing a sufficiently smooth nonlinear dynamical as a structured potential-driven system. The proposed approach is based on a decomposition of a differential one-form that encodes the divergence of the given vector fields into its exact and anti-exact components, and into its co-exact and anti-coexact components. The decomposition method, based on the Hodge decomposition theorem, is rendered constructive by introducing a dual operator to the standard homotopy operator. The dual operator inverts locally the co-differential operator, and is used in the present paper to identify the structure of the dynamics. Applications of the proposed approach to gradient systems, Hamiltonian systems, and generalized Hamiltonian systems are given to illustrate the proposed approach.
非线性系统的几何分解和基于势的表示
研究了将一个足够光滑的非线性动力学系统表示为一个结构的势驱动系统的问题。所提出的方法是基于微分一形式的分解,该分解将给定向量场的散度编码为其精确和反精确分量,以及其共精确和反共精确分量。通过在标准同伦算子上引入对偶算子,使得基于Hodge分解定理的分解方法具有构造性。对偶算子是协微分算子的局部逆变,本文用对偶算子来识别动力学结构。本文给出了该方法在梯度系统、哈密顿系统和广义哈密顿系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信