{"title":"Ultrasonographic plaque characterization using a rayleigh mixture model","authors":"J. Seabra, J. Sanches, F. Ciompi, P. Radeva","doi":"10.1109/ISBI.2010.5490428","DOIUrl":null,"url":null,"abstract":"A correct modelling of tissue morphology is determinant for the identification of vulnerable plaques. This paper aims at describing the plaque composition by means of a Rayleigh Mixture Model applied to ultrasonic data. The effectiveness of using a mixture of distributions is established through synthetic and real ultrasonic data samples. Furthermore, the proposed mixture model is used in a plaque classification problem in Intravascular Ultrasound (IVUS) images of coronary plaques. A classifier tested on a set of 67 in-vitro plaques, yields an overall accuracy of 86% and sensitivity of 92%, 94% and 82%, for fibrotic, calcified and lipidic tissues, respectively. These results strongly suggest that different plaques types can be distinguished by means of the coefficients and Rayleigh parameters of the mixture distribution.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
A correct modelling of tissue morphology is determinant for the identification of vulnerable plaques. This paper aims at describing the plaque composition by means of a Rayleigh Mixture Model applied to ultrasonic data. The effectiveness of using a mixture of distributions is established through synthetic and real ultrasonic data samples. Furthermore, the proposed mixture model is used in a plaque classification problem in Intravascular Ultrasound (IVUS) images of coronary plaques. A classifier tested on a set of 67 in-vitro plaques, yields an overall accuracy of 86% and sensitivity of 92%, 94% and 82%, for fibrotic, calcified and lipidic tissues, respectively. These results strongly suggest that different plaques types can be distinguished by means of the coefficients and Rayleigh parameters of the mixture distribution.