Model-free trajectory optimization for wireless data ferries among multiple sources

Ben Pearre, T. Brown
{"title":"Model-free trajectory optimization for wireless data ferries among multiple sources","authors":"Ben Pearre, T. Brown","doi":"10.1109/GLOCOMW.2010.5700250","DOIUrl":null,"url":null,"abstract":"Given multiple widespread stationary data sources such as ground-based sensors, an unmanned aircraft can fly over the sensors and gather the data via a wireless link. To minimize delays and system resources, the unmanned aircraft should collect the data at each node via the shortest trajectory. The trajectory planning is hampered by the complex vehicle and communication dynamics. We present a method that allows the ferry to optimize a multi-node data collection trajectory through an unknown radio field using reinforcement learning. The approach learns improved trajectories in situ obviating the need for detailed system identification. The ferry is able to quickly learn significantly improved trajectories compared to alternative heuristics.","PeriodicalId":232205,"journal":{"name":"2010 IEEE Globecom Workshops","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Globecom Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOMW.2010.5700250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Given multiple widespread stationary data sources such as ground-based sensors, an unmanned aircraft can fly over the sensors and gather the data via a wireless link. To minimize delays and system resources, the unmanned aircraft should collect the data at each node via the shortest trajectory. The trajectory planning is hampered by the complex vehicle and communication dynamics. We present a method that allows the ferry to optimize a multi-node data collection trajectory through an unknown radio field using reinforcement learning. The approach learns improved trajectories in situ obviating the need for detailed system identification. The ferry is able to quickly learn significantly improved trajectories compared to alternative heuristics.
无线数据在多个数据源之间传递的无模型轨迹优化
给定多个广泛分布的固定数据源,如地面传感器,无人驾驶飞机可以飞越传感器并通过无线链路收集数据。为了最大限度地减少延迟和系统资源,无人机应该通过最短的轨迹在每个节点收集数据。复杂的飞行器动力学和通信动力学阻碍了弹道规划。我们提出了一种方法,该方法允许轮渡使用强化学习优化通过未知无线电场的多节点数据收集轨迹。该方法在原位学习改进的轨迹,从而无需详细的系统识别。与其他启发式方法相比,轮渡能够快速学习显著改进的轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信