Microwave Response of a Microstrip Circuit Embedding Carbon Nanotube Films

A. Maffucci, M. Migliore, S. Sibilia, A. Paddubskaya, Daniele Pinchera, F. Schettino
{"title":"Microwave Response of a Microstrip Circuit Embedding Carbon Nanotube Films","authors":"A. Maffucci, M. Migliore, S. Sibilia, A. Paddubskaya, Daniele Pinchera, F. Schettino","doi":"10.1109/COMCAS44984.2019.8958078","DOIUrl":null,"url":null,"abstract":"This paper investigates the microwave range response of microstrip circuit where a film of carbon nanotubes is embedded into a microstrip-like circuit. Such a nanomaterial, as well as graphene, is currently embedded into planar structures like patch antennas, to exploit its novel features as, for instance, easy tunability. In view of these applications, in this paper it is analyzed the dependence of the scattering parameters from the geometrical and physical parameters of the circuit. The analysis is carried out either by means of experimental characterization via microstrip technique, and of numerical simulations with a full-wave electromagnetic simulation tool. In addition, by using these two results and by using structural characterization of the nanomaterial equivalent, an equivalent complex permittivity is retrieved, describing the embedded film.","PeriodicalId":276613,"journal":{"name":"2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMCAS44984.2019.8958078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the microwave range response of microstrip circuit where a film of carbon nanotubes is embedded into a microstrip-like circuit. Such a nanomaterial, as well as graphene, is currently embedded into planar structures like patch antennas, to exploit its novel features as, for instance, easy tunability. In view of these applications, in this paper it is analyzed the dependence of the scattering parameters from the geometrical and physical parameters of the circuit. The analysis is carried out either by means of experimental characterization via microstrip technique, and of numerical simulations with a full-wave electromagnetic simulation tool. In addition, by using these two results and by using structural characterization of the nanomaterial equivalent, an equivalent complex permittivity is retrieved, describing the embedded film.
嵌入碳纳米管薄膜的微带电路的微波响应
研究了在微带电路中嵌入碳纳米管薄膜的微带电路的微波范围响应。这种纳米材料,以及石墨烯,目前被嵌入到像贴片天线这样的平面结构中,以利用其新特性,例如,易于调节。针对这些应用,本文分析了电路几何参数和物理参数对散射参数的依赖关系。通过微带技术的实验表征和全波电磁仿真工具的数值模拟进行了分析。此外,利用这两个结果,并利用纳米材料等效的结构表征,获得了描述嵌入膜的等效复介电常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信