Using the Hybrid MLR-RNN Approach for Air Pollution Forecasting

Osama Basheer Hannon, Mariam Moneeb
{"title":"Using the Hybrid MLR-RNN Approach for Air Pollution Forecasting","authors":"Osama Basheer Hannon, Mariam Moneeb","doi":"10.33899/iqjoss.2019.164191","DOIUrl":null,"url":null,"abstract":"Air Quality Modeling gained great in atmospheric pollution its environment and human health. In our study, the relationship between (Particulate Matter PM 10 ) and other nine variables over three years is studied to applied the multiple linear regression models (MLR). The MLR model is the most common for studying like this multivariate case. The main problem for this type of data is the non linear style that has been referred by many researchers before. The recurrent neural network (RNN) is nonlinear","PeriodicalId":351789,"journal":{"name":"IRAQI JOURNAL OF STATISTICAL SCIENCES","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRAQI JOURNAL OF STATISTICAL SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33899/iqjoss.2019.164191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Air Quality Modeling gained great in atmospheric pollution its environment and human health. In our study, the relationship between (Particulate Matter PM 10 ) and other nine variables over three years is studied to applied the multiple linear regression models (MLR). The MLR model is the most common for studying like this multivariate case. The main problem for this type of data is the non linear style that has been referred by many researchers before. The recurrent neural network (RNN) is nonlinear
混合MLR-RNN方法在空气污染预报中的应用
空气质量建模在大气污染、环境和人体健康方面取得了巨大的进展。本研究采用多元线性回归模型(MLR),研究了3年内(颗粒物pm10)与其他9个变量的关系。MLR模型是研究这种多变量情况最常用的方法。这类数据的主要问题是许多研究人员之前提到的非线性风格。递归神经网络(RNN)是非线性的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信