Local Kernel Mapping for Object Recognition

Baochang Zhang, Hong Zheng, Zhongli Wang
{"title":"Local Kernel Mapping for Object Recognition","authors":"Baochang Zhang, Hong Zheng, Zhongli Wang","doi":"10.1109/ICNC.2009.419","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method, named Local Kernel Mapping (LKM), for object recognition. LKM is proposed to capture the nonlinear local relationship by using the kernel function. Different from traditional kernel methods for feature extraction, the proposed method does not need to reserve the training samples. To testify the effectiveness of LKM, we apply it on Local Binary Pattern (LBP), and the experiment results on palmprint show that LKM can improve the performance of the LBP method.","PeriodicalId":235382,"journal":{"name":"2009 Fifth International Conference on Natural Computation","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fifth International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2009.419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a new method, named Local Kernel Mapping (LKM), for object recognition. LKM is proposed to capture the nonlinear local relationship by using the kernel function. Different from traditional kernel methods for feature extraction, the proposed method does not need to reserve the training samples. To testify the effectiveness of LKM, we apply it on Local Binary Pattern (LBP), and the experiment results on palmprint show that LKM can improve the performance of the LBP method.
目标识别的局部核映射
本文提出了一种新的目标识别方法——局部核映射(LKM)。提出了利用核函数捕获非线性局部关系的LKM方法。与传统的核特征提取方法不同,该方法不需要保留训练样本。为了验证LKM的有效性,我们将其应用于局部二值模式(LBP),掌纹实验结果表明LKM可以提高LBP方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信