{"title":"Data Encoding for Byzantine-Resilient Distributed Gradient Descent","authors":"Deepesh Data, Linqi Song, S. Diggavi","doi":"10.1109/ALLERTON.2018.8636017","DOIUrl":null,"url":null,"abstract":"We consider distributed gradient computation, where both data and computation are distributed among m worker machines, t of which can be Byzantine adversaries, and a designated (master) node computes the model/parameter vector, iteratively using gradient descent (GD). The Byzantine adversaries can (collaboratively) deviate arbitrarily from their gradient computation. To solve this, we propose a method based on data encoding and (real) error correction to combat the adversarial behavior. We can tolerate up to$t\\leq \\displaystyle \\lfloor\\frac{m-1}{2}\\rfloor$ corrupt worker nodes, which is information-theoretically optimal. Our method does not assume any probability distribution on the data. We develop a sparse encoding scheme which enables computationally efficient data encoding. We demonstrate a trade-off between the number of adversaries tolerated and the resource requirement (storage and computational complexity). As an example, our scheme incurs a constant overhead (storage and computational complexity) over that required by the distributed GD algorithm, without adversaries, for$t\\leq \\displaystyle \\frac{m}{3}$.","PeriodicalId":299280,"journal":{"name":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2018.8636017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
We consider distributed gradient computation, where both data and computation are distributed among m worker machines, t of which can be Byzantine adversaries, and a designated (master) node computes the model/parameter vector, iteratively using gradient descent (GD). The Byzantine adversaries can (collaboratively) deviate arbitrarily from their gradient computation. To solve this, we propose a method based on data encoding and (real) error correction to combat the adversarial behavior. We can tolerate up to$t\leq \displaystyle \lfloor\frac{m-1}{2}\rfloor$ corrupt worker nodes, which is information-theoretically optimal. Our method does not assume any probability distribution on the data. We develop a sparse encoding scheme which enables computationally efficient data encoding. We demonstrate a trade-off between the number of adversaries tolerated and the resource requirement (storage and computational complexity). As an example, our scheme incurs a constant overhead (storage and computational complexity) over that required by the distributed GD algorithm, without adversaries, for$t\leq \displaystyle \frac{m}{3}$.