Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment

Z. Tu, X. Zhou, L. Bogoni, Adrian Barbu, D. Comaniciu
{"title":"Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment","authors":"Z. Tu, X. Zhou, L. Bogoni, Adrian Barbu, D. Comaniciu","doi":"10.1109/CVPR.2006.228","DOIUrl":null,"url":null,"abstract":"Automatic polyp detection is an increasingly important task in medical imaging with virtual colonoscopy [15] being widely used. In this paper, we present a 3D object detection algorithm and show its application on polyp detection from CT images. We make the following contributions: (1) The system adopts Probabilistic Boosting Tree (PBT) to probabilistically detect polyps. Integral volume and 3D Haar filters are introduced to achieve fast feature computation. (2) We give an explicit convergence rate analysis for the AdaBoost algorithm [2] and prove that the error at each step \\in t+1. is tightly bounded by the previous error \\in t. (3) For a 3D polyp template, a generative model is defined. Given the bound and convergence analysis, we analyze the role of \"sample alignment\" in the template design and devise a robust and efficient algorithm for polyp detection. The overall system has been tested on 150 volumes and the results obtained are very encouraging.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

Automatic polyp detection is an increasingly important task in medical imaging with virtual colonoscopy [15] being widely used. In this paper, we present a 3D object detection algorithm and show its application on polyp detection from CT images. We make the following contributions: (1) The system adopts Probabilistic Boosting Tree (PBT) to probabilistically detect polyps. Integral volume and 3D Haar filters are introduced to achieve fast feature computation. (2) We give an explicit convergence rate analysis for the AdaBoost algorithm [2] and prove that the error at each step \in t+1. is tightly bounded by the previous error \in t. (3) For a 3D polyp template, a generative model is defined. Given the bound and convergence analysis, we analyze the role of "sample alignment" in the template design and devise a robust and efficient algorithm for polyp detection. The overall system has been tested on 150 volumes and the results obtained are very encouraging.
CT图像中概率三维息肉检测:样本对齐的作用
随着虚拟结肠镜检查[15]的广泛应用,自动息肉检测在医学成像中越来越重要。本文提出了一种三维目标检测算法,并展示了该算法在CT图像息肉检测中的应用。我们做出了以下贡献:(1)系统采用概率提升树(PBT)对息肉进行概率检测。采用积分体积和三维Haar滤波器实现特征的快速计算。(2)我们给出了AdaBoost算法的显式收敛速率分析[2],并证明了t+1中每一步的误差\。(3)对于一个三维多边形模板,定义了一个生成模型。在有界分析和收敛分析的基础上,分析了“样本对齐”在模板设计中的作用,设计了一种鲁棒高效的息肉检测算法。整个系统已经在150卷上进行了测试,获得的结果非常令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信