Anime Character Colorization using Few-shot Learning

Akinobu Maejima, Hiroyuki Kubo, Seitaro Shinagawa, Takuya Funatomi, T. Yotsukura, Satoshi Nakamura, Y. Mukaigawa
{"title":"Anime Character Colorization using Few-shot Learning","authors":"Akinobu Maejima, Hiroyuki Kubo, Seitaro Shinagawa, Takuya Funatomi, T. Yotsukura, Satoshi Nakamura, Y. Mukaigawa","doi":"10.1145/3478512.3488604","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an automatic Anime-style colorization method using only a small number of colorized reference images manually colorized by artists. To accomplish this, we introduce a few-shot patch-based learning method considering the characteristics of Anime line-drawing. To streamline the learning process, we derive optimal settings with acceptable colorization accuracy and training time for a production pipeline. We demonstrate that the proposed method helps to reduce manual labor for artists.","PeriodicalId":156290,"journal":{"name":"SIGGRAPH Asia 2021 Technical Communications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2021 Technical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3478512.3488604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose an automatic Anime-style colorization method using only a small number of colorized reference images manually colorized by artists. To accomplish this, we introduce a few-shot patch-based learning method considering the characteristics of Anime line-drawing. To streamline the learning process, we derive optimal settings with acceptable colorization accuracy and training time for a production pipeline. We demonstrate that the proposed method helps to reduce manual labor for artists.
使用少量镜头学习的动画角色着色
在本文中,我们提出了一种自动动画风格的着色方法,该方法仅使用少量由艺术家手动着色的彩色参考图像。为了实现这一目标,我们引入了一种基于几镜头补丁的学习方法,并考虑了动画线条绘制的特点。为了简化学习过程,我们为生产管道获得具有可接受的着色精度和培训时间的最佳设置。我们证明,提出的方法有助于减少体力劳动的艺术家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信