{"title":"A Matrix Decomposition based Webshell Detection Method","authors":"Xin Sun, Xindai Lu, Hua Dai","doi":"10.1145/3058060.3058083","DOIUrl":null,"url":null,"abstract":"WebShell is a web based network backdoor. With the help of WebShells, the hacker can take any control of the web services illegally. The current method of detecting WebShells is just matching the eigenvalues or detecting the produced flow or services, which is hard to find new kinds of WebShells. To solve these problems, this paper analyzes the different features of a page and proposes a novel matrix decomposition based WebShell detection algorithm. The algorithm is a supervised machine learning algorithm. By analyzing and learning features of known existing and non-existing WebShell pages, the algorithm can make predictions on the unknown pages. The experimental results show that, compared with traditional detection methods, this algorithm spends less time, has higher accuracy and recall rate, and can detect new kinds of WebShells with a certain probability, overcoming the shortcomings of the traditional feature matching based method, improving the accuracy and recalling rate of WebShell detection.","PeriodicalId":152599,"journal":{"name":"International Conference on Cryptography, Security and Privacy","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Cryptography, Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3058060.3058083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
WebShell is a web based network backdoor. With the help of WebShells, the hacker can take any control of the web services illegally. The current method of detecting WebShells is just matching the eigenvalues or detecting the produced flow or services, which is hard to find new kinds of WebShells. To solve these problems, this paper analyzes the different features of a page and proposes a novel matrix decomposition based WebShell detection algorithm. The algorithm is a supervised machine learning algorithm. By analyzing and learning features of known existing and non-existing WebShell pages, the algorithm can make predictions on the unknown pages. The experimental results show that, compared with traditional detection methods, this algorithm spends less time, has higher accuracy and recall rate, and can detect new kinds of WebShells with a certain probability, overcoming the shortcomings of the traditional feature matching based method, improving the accuracy and recalling rate of WebShell detection.