Effect of U-Net Hyperparameter Optimisation in Polyp Segmentation from Colonoscopy Images

R. Karthikha, D. Najumnissa, S. Syed Rafiammal
{"title":"Effect of U-Net Hyperparameter Optimisation in Polyp Segmentation from Colonoscopy Images","authors":"R. Karthikha, D. Najumnissa, S. Syed Rafiammal","doi":"10.1109/ICICICT54557.2022.9917700","DOIUrl":null,"url":null,"abstract":"Colorectal cancer can be detected from the location of polyps present in the colon. Colonoscopy is the standard method for polyp detection from where the images are retrieved. Deep neural networks are preferred for the segmentation of polyps from colonoscopy images. The hyperparameters directly control the performance of the neural network model. In this work, the impacts of different neural network optimizers and various activation functions are analyzed for U-net architecture. The analysis shows that the N- Adam optimizer with Sigmoid activation function yields better accuracy of 94.06% for polyp segmentation from colonoscopy images.","PeriodicalId":246214,"journal":{"name":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICICT54557.2022.9917700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer can be detected from the location of polyps present in the colon. Colonoscopy is the standard method for polyp detection from where the images are retrieved. Deep neural networks are preferred for the segmentation of polyps from colonoscopy images. The hyperparameters directly control the performance of the neural network model. In this work, the impacts of different neural network optimizers and various activation functions are analyzed for U-net architecture. The analysis shows that the N- Adam optimizer with Sigmoid activation function yields better accuracy of 94.06% for polyp segmentation from colonoscopy images.
U-Net超参数优化在结肠镜图像息肉分割中的效果
结直肠癌可以从结肠息肉的位置检测出来。结肠镜检查是息肉检测的标准方法,从那里提取图像。深度神经网络是结肠镜图像中息肉分割的首选方法。超参数直接控制神经网络模型的性能。在这项工作中,分析了不同的神经网络优化器和各种激活函数对U-net架构的影响。分析表明,具有Sigmoid激活函数的N- Adam优化器对结肠镜图像的息肉分割准确率达到94.06%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信