S. Miric, R. Giuffrida, G. Rohner, D. Bortis, J. Kolar
{"title":"Design and Experimental Analysis of a Selfbearing Double-Stator Linear-Rotary Actuator","authors":"S. Miric, R. Giuffrida, G. Rohner, D. Bortis, J. Kolar","doi":"10.1109/IEMDC47953.2021.9449501","DOIUrl":null,"url":null,"abstract":"Linear-rotary actuators (LiRAs) are today used in industry applications where a controlled linear and rotary motion is necessary such as pick-and-place robots, servo actuation of gearboxes or tooling machines. However, in special industry applications that require high purity and/or high precision positioning, the usage of conventional LiRAs with mechanical bearings is limited. Therefore, in this paper a LiRA with integrated magnetic bearings, i.e. a selfbearing/bearingless LiRA, is analyzed. The actuator employs concentrically arranged linear and rotary stators placed inside and outside a cylindrically shaped mover, which results in a so-called selfbearing double-stator (SBDS) LiRA. A FEM geometry optimization of the SBDS LiRA is performed and Pareto performance plots concerning linear force and torque generation are obtained. A SBDS LiRA hardware demonstrator and an 18-phase inverter power supply hardware prototype are built and their operation is experimentally verified by rotary and linear position step response measurements.","PeriodicalId":106489,"journal":{"name":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC47953.2021.9449501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Linear-rotary actuators (LiRAs) are today used in industry applications where a controlled linear and rotary motion is necessary such as pick-and-place robots, servo actuation of gearboxes or tooling machines. However, in special industry applications that require high purity and/or high precision positioning, the usage of conventional LiRAs with mechanical bearings is limited. Therefore, in this paper a LiRA with integrated magnetic bearings, i.e. a selfbearing/bearingless LiRA, is analyzed. The actuator employs concentrically arranged linear and rotary stators placed inside and outside a cylindrically shaped mover, which results in a so-called selfbearing double-stator (SBDS) LiRA. A FEM geometry optimization of the SBDS LiRA is performed and Pareto performance plots concerning linear force and torque generation are obtained. A SBDS LiRA hardware demonstrator and an 18-phase inverter power supply hardware prototype are built and their operation is experimentally verified by rotary and linear position step response measurements.